Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq \pm 2$
\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)
Để $A<0\Leftrightarrow \frac{1}{2-x}<0$
$\Leftrightarrow 2-x<0\Leftrightarrow x>2$
Kết hợp với ĐKXĐ suy ra $x>2$
b.
Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$
$\Rightarrow 2-x=1$ hoặc $2-x=-1$
$\Rightarrow x=1$ hoặc $x=3$
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
d> Ta có: \(\frac{-1}{x-2}\)( Theo a )
Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1
*> X-2=1 => X=3 (TMĐK)
*> X-2=-1 => X=1 (TMĐK)
\(=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x}{x+2}\right)\)
\(=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x}{x+2}\right)\)
Đổi 10-x lại thành\(10-x^2\) nha, mk thiếu! sorry!
\(=\left(\frac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=-\frac{1}{x-2}\)