\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{3^2}-1\right).....\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số ) 

\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)

\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)

\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)

\(A=-\frac{2015}{4028}\)

Vậy.....

17 tháng 9 2017

-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))

-A= \(\frac{3}{4}\)\(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)

-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)

-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)

-A= \(\frac{2015}{2014.2}\)

-A=\(\frac{2015}{4028}\)

20 tháng 8 2017

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)

\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)

\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)

\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)

\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)

Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)

12 tháng 8 2015

Vì \(\frac{1}{2^2}>0\)

 ............

 \(\frac{1}{2014^2}>0\)

=> A = \(\left(\frac{1}{2^2}\right)\left(\frac{1}{3^2}\right)...\left(\frac{1}{2014^2}\right)>0\)

B = \(-\frac{1}{2}<0\)

Vậy A > B 

24 tháng 10 2018

gap A len 1/2

24 tháng 10 2018

\(2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2015}\)

\(\Rightarrow2A-A=1-\left(\frac{1}{2}\right)^{2014}\Rightarrow A=1-\left(\frac{1}{2}\right)^{2014}< 1\)

15 tháng 6 2019

Đề là gì thế bạn? Tính hay So sánh?

15 tháng 6 2019

đề là tính các bạn ạ. Mình xin lỗi vì quên ko ghi đề.

17 tháng 7 2016

a.

\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)

b.

\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)

c.

\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)

28 tháng 7 2015

A = \(-\frac{1.3}{2.2}.-\frac{2.4}{3.3}.\cdot\cdot\cdot-\frac{2013.2015}{2014.2014}=-\frac{\left(1.2.3...2013\right).\left(3.4.5....2015\right)}{\left(2.3....2014\right).\left(2.3....2014\right)}=-\frac{2.2015}{2014}=-\frac{4030}{2014}<-\frac{1}{2}\)

VẬy A < B 

30 tháng 7 2015

A<B

mình đúng nha