K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

\(a.2x^2-6x=0\)

\(2x\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(t/mđk\right)\\x=3\left(loại,kot/mđk\right)\end{cases}}\)

\(Thay:x=0\left(t/mđk\right)\Leftrightarrow A=\frac{x-3}{x+3}\Rightarrow\frac{0-3}{0+3}=-\frac{3}{3}=-1\left(t/mđk\right)\)

DD
16 tháng 7 2021

a) ĐK: \(x\ne0,x\ne\pm3\)

\(A=\left(\frac{x-3}{x^2-9}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)

\(=\left(\frac{1}{x+3}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)

\(=\frac{2}{x+3}\times\frac{x+3}{x}=\frac{2}{x}\)

b) \(\left|A\right|=\left|\frac{2}{x}\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=3\\\frac{2}{x}=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)(thỏa mãn) 

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}

NV
8 tháng 3 2020

\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)

\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)

\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)

Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)

2 tháng 12 2019

\(a,\)\(đkxđ\)của \(A\)\(:\)\(\hept{\begin{cases}x^2-25\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)\left(x+5\right)\ne0\\x\left(x+5\right)\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)

\(đkxđ\)của \(B\)\(:\)\(\hept{\begin{cases}x^2+5x\ne0\\5-x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+5\right)\ne0\\5-x\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)

\(b,\)\(A=\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}=\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\)

\(=\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}\)\(=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}\)

\(B=\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}=\frac{2x-5}{x\left(x+5\right)}-\frac{x+3}{x-5}\)

\(=\frac{\left(2x-5\right)\left(x+5\right)-\left(x-3\right)\left(x^2+5x\right)}{x\left(x-5\right)\left(x+5\right)}\)

\(=\frac{2x^2+5x-25-x^3-2x^2+15x}{x\left(x-5\right)\left(x+5\right)}\)

\(=\frac{-x^3+20x-25}{x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow P=A:B=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}:\frac{x^3+20x-25}{x\left(x+5\right)\left(x-5\right)}\)

\(=\frac{10x-25}{x^3+20x-25}\)

Đề có vấn đề ko vậy babe -.- \(x^3+20x-25\)vẫn phân tích được, nhưng ko rút gọn được -.-

3 tháng 12 2019

Lí do mk ko lm đc là ở chỗ đó đó

9 tháng 8 2021

a, ĐK : \(x\ne\pm3;\frac{1}{2}\)

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)

\(=\left(\frac{\left(x-1\right)\left(x-3\right)+2\left(x+3\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{2x-1-2x-1}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}:\left(-\frac{2}{2x+1}\right)\)

\(=\frac{-2x+6}{\left(x+3\right)\left(x-3\right)}.\frac{-\left(2x+1\right)}{2}=\frac{2x+1}{x+3}\)

b, Ta có : \(\left|x+1\right|=\frac{1}{2}\)

TH1 : \(x+1=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2}\)

Thay vào biểu thức A ta được : \(\frac{-1+1}{-\frac{1}{2}+3}=0\)

TH2 : \(x+1=-\frac{1}{2}\Leftrightarrow x=-\frac{3}{2}\)

Thay vào biểu thức A ta được : \(\frac{-3+1}{-\frac{3}{2}+3}=\frac{-2}{\frac{3}{2}}=-\frac{4}{3}\)

9 tháng 8 2021

c, Ta có : \(P=\frac{x}{2}\Rightarrow\frac{2x+1}{x+3}=\frac{x}{2}\Rightarrow4x+2=x^2+3x\)

\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

b, Ta có : \(\frac{2x+1}{x+3}=\frac{2\left(x+3\right)-5}{x+3}=2-\frac{5}{x+3}\)

\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

x + 31-15-5
x-2-42-8
17 tháng 3 2019

a)     \(ĐKXĐ:x\ne-3;x\ne2\)

b)     \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

vậy \(P=\frac{x-4}{x-2}\)

\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)

\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)

mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)

mà theo ĐKXĐ:  \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)

thay mấy cái kia vào rồi tìm \(x\)

d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)

khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)