Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút Gọn:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{4}{x}-1}\)
\(=\frac{2\sqrt{x-4}}{\frac{4-x}{x}}\)
\(=-\frac{2x\sqrt{x-4}}{x-4}\)
\(=\frac{-2x}{\sqrt{x-4}}\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\left(x>4\right)\)( mình có sửa lại đề 1 chút)
\(\Leftrightarrow P=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{x}\right)^2}}=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|1-\frac{4}{x}\right|}\)
\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left|\frac{x-4}{x}\right|}\)
nếu 4<x=<8 thì P=\(\frac{4x}{x-4}\)
nếu x>8 thì P=\(\frac{2x}{\sqrt{x-4}}\)
xét P=\(\frac{4x}{x-4}=4+\frac{16}{x-4}\left(x\inℤ\right)\)
P\(\inℤ\)<=> x-4 là ước của 16 và 4<x=<8 \(\Leftrightarrow x=5;6;8\)
xét P=\(\frac{2x}{\sqrt{x-4}}\left(x\inℤ;x>8\right)\left(1\right)\)
với x \(\inℤ\Rightarrow\sqrt{x-4}\)là số vô tỷ hoặc \(\sqrt{x-4}\inℤ\)
do đó từ (1) => \(P\inℤ\Rightarrow\sqrt{x-4}\inℤ\Leftrightarrow\sqrt{x-4}=a\left(a\inℤ;a>2\right)\)
\(\Rightarrow a^2=\frac{2\left(a^2+4\right)}{a}=2a+\frac{8}{a}\left(a\inℤ;a>2\right)\left(2\right)\)
từ (2) => \(P\inℤ\Rightarrow\frac{8}{x}\inℤ\)<=> a là ước của 8 và a>2
<=> a={4;8} => x=20;x=68
vậy x={5;6;8;20;68}
a) \(A=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8-2+3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)
b) Để \(A\in Z\)
\(\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-4}=\frac{\sqrt{x}-4}{\sqrt{x}-4}+\frac{7}{\sqrt{x}-4}\in Z\)
=>\(\sqrt{x}-4\inƯ\left(7\right)\)
........
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)
thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)
A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)
Mà \(0<\)\(x-4\le4\)
Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)
\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0<\sqrt{x-4}\)\(<2\)
Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)
\(+\sqrt{x-4}\ge2\)
\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)
Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)
\(\Rightarrow A\ge2.4=8\)
Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)
Vậy GTNN của A là 8 khi x = 8.
a,b) Đk để biểu thức A xác định là x > 4
\(A=\frac{x\left(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\right)}{\sqrt{\left(x-4\right)^2}}\)
\(A=\frac{x\left(|\sqrt{x-4}+2|+|\sqrt{x-4}-2|\right)}{|x-4|}\)
\(A=\frac{x\left(\sqrt{x-4}+2+|\sqrt{x-4}-2|\right)}{x-4}\)
+) Nếu 4 < x < 8 thì \(\sqrt{x-4}-2< 0\)nên \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)
Do 4 < x < 8 nên 0 < x - 4 < 4 => A > 88
+) Nếu \(x\ge8\)thì \(\sqrt{x-4}-2\ge0\)nên :
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}=2\sqrt{x-4}+\frac{8}{\sqrt{x-4}}\ge2\sqrt{16}=8\)
( Theo bđt Cô si )
- Dấu " = " xảy ra khi và chỉ khi \(2\sqrt{x-4}=\frac{8}{\sqrt{x-4}}\Leftrightarrow x-4=4\Leftrightarrow x=8\)
Vậy Min của A = 8 khi x = 8
c) Xét 4 < x < 8 thì \(A=4+\frac{16}{x-4}\), ta thấy \(A\in Z\)khi và chỉ khi \(\frac{16}{x-4}\in Z\Leftrightarrow x-4\)là ước nguyên dương của 16
- Hay \(x-4\in\left\{1;2;4;16\right\}\Leftrightarrow x=\left\{5;6;8;12;20\right\}\)đối chiếu điều kiện => x = 5 hoặc x = 6
+) Xét \(x\ge8\)ta có : \(A=\frac{2x}{\sqrt{x-4}}\)
Đặt \(\sqrt{x-4}=m\Rightarrow\hept{\begin{cases}x=m^2+4\\m\ge2\end{cases}}\)khi đó ta có : \(A=\frac{2\left(m^2+4\right)}{m}=2m+\frac{8}{m}\)
\(\Rightarrow m\in\left\{2;4;8\right\}\Leftrightarrow x\in\left\{8;20;68\right\}\)
Vậy để A nhận giá trị nguyên thì \(x\in\left\{5;6;8;20;68\right\}\)