Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.9\right)^3.\left(6.9\right)^2}{\left(6.2.9\right)^4}=\frac{2^9.9^3.6^2.9^2}{6^4.2^4.9^4}=\frac{2^5.9}{6^2}=\frac{2^5.3^2}{\left(2.3\right)^2}=\frac{2^5.3^2}{2^2.3^2}=2^3=8\)
\(A=\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=\frac{2^3}{1}=8\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.3^4.4^4}=\frac{9^5.4^3.2^3.2^2.3^2}{9^4.4^4.3^4}\)\(=\frac{9.2^3.2^2}{4.3^2}=2^3=8\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.12^4}=\frac{9.4^3.2^3.3^2.2^2}{3^4.4^4}=\frac{9.2^3.2^2}{3^2.4}\) =23=8
=\(\frac{2^9.3^6.54^2}{54^4.2^4}\)=\(\frac{2^5.3^6}{54^2}\)=\(\frac{2^5.3^6}{2^2.3^6}\)=23
tích minh nha.
b, \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
=\(\frac{2^2.78}{104}\)=\(\frac{312}{104}\)=3
\(=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{9+2}.3^{6+6}}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
\(\frac{373248.2916}{136048896}\)= \(\frac{1088391168}{136048896}\)
Vậy đáp án là: \(\frac{1088391168}{136048896}\)= \(8\)
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
\(A=\frac{72^3.54^2}{108}=\frac{\left(2^3.3^2\right)^2.\left(2.3^3\right)^2}{2^2.3^3}=\frac{2^6.3^4.2^2.3^6}{2^2.3^3}=\frac{2^8.3^{10}}{2^2.3^3}\)
\(A=2^6.3^7\)
\(\frac{72^3.54^2}{108}\)
\(=\frac{2^9.3^6.2^2.3^6}{2^2.3^3}\)
\(=\frac{2^{11}.3^{12}}{2^2.3^3}\)
\(=2^9.3^9\)
\(=6^9\)