K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Cô gợi ý nhé. Ta tách \(\frac{3}{1\times3}=\frac{3}{2}.\frac{2}{1.3}=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}\right)\)

Các hạng tử sau tương tự như vậy.

1 tháng 9 2016

bài này dễ mà em 

12 tháng 7 2019

\(\frac{1}{1x3x5}+\frac{1}{5x7x9}+\frac{1}{9x11x13}+.....+\frac{1}{49x51x53}=\)

\(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{49}-\frac{1}{51}-\frac{1}{53}=\)

\(1-\frac{1}{3}-\frac{1}{7}-....-\frac{1}{51}-\frac{1}{53}=\)

19 tháng 9 2019

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)

\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)

\(=\frac{1}{3}-\frac{1}{47.49}\)

\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)

24 tháng 7 2016

\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=2.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}=\frac{200}{101}\)

24 tháng 7 2016

Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+..+\frac{4}{99.101}\)

\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=2.\left(1-\frac{1}{101}\right)\)

\(A=\frac{2.100}{101}=\frac{200}{101}\)

Ủng hộ mk nha !!! ^_^

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

26 tháng 9 2016

Ta xét riêng tử số:

\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)

\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Bây giờ xét đến mẫu số:

\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)

\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)

26 tháng 9 2016

thanks 

13 tháng 3 2018

đề hsg á nha

13 tháng 3 2018

= 1.3+1/1.3 . 2.4+1/2.4 . ....... . 2016.2018+1/2016.2018

= 2^2/1.3 . 3^2/2.4 . ....... . 2017^2/2016.2018

= 2.3. ...... . 2017/1.2. ..... . 2016  .  2.3. ..... . 2017/3.4. ...... . 2018

= 2017 . 2/2018

= 2017/1009

Tk mk nha

29 tháng 4 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)