Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Bài 1: Tính hợp lý (nếu có thể)
a) 5.(-8).(-2).(-3)\(=\left(-2.5\right).\left(\left(-3\right).\left(-8\right)\right)=-10.24=-240\)
c) 147.333+233.(-147)\(=147\left(333-233\right)=147.100=14700\)
b) (-125).8.(-2).5.19\(=\left(-125.8\right).\left(-2.5\right).19=-1000.\left(-10\right).19=190\text{ }000\)
d) (-115).27+33.(-115)\(=-115.\left(27+33\right)=-115.60=-6900\)
Bài 2: Tìm số nguyên x, biết:
a) 2x+19=15\(\Leftrightarrow2x=15-19=-4\Leftrightarrow x=-2\)
c) 24-(x-3)^3=-3\(\Leftrightarrow\left(x-3\right)^3=27=3^3\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
18^3 : 9^3 = 5832 : 729 = 8
125^3 : 25^3 = (5^3)^3 : (5^2)^3 = 5^9 : 5^6 = 5^3 = 125
có quy luật hay lắm
\(18^3:9^3=\left(18:9\right)^3=2^3=8\)
\(125^3:25^3=\hept{\begin{cases}\left(5^3\right)^3:\left(5^2\right)^3=5^9:5^6=5^3=125\\\left(5^3\right)^3:\left(5^2\right)^3=\left(5^3:5^2\right)^3=5^3=125\end{cases}}\)chọn cách nào thì tùy bạn
\(\left(10^3+10^4+125^3\right):5^3=\left[10^3+10^3.10+\left(5^2\right)^3\right]:5^3\)
\(=\left(10^3.11+5^6\right):5^3\)
\(=10^3.11:5^3+5^6:5^3\)
\(=\left(10^3:5^3\right).11+5^3\)
\(=2^3.11+5^3\)
\(=88+125=213\)
\(\left(2^{43}+2^4\right):\left(2^{39}+1\right)=\)tương tự mà làm
Lời giải:
\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)
\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
---------------------
Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(\Rightarrow A>1> \frac{3}{4}> B\)
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
\(C=1-2+2^2-2^3+...-2^{2011}+2^{2012}\)
\(\Rightarrow2C=2-2^2+2^3-2^4+...-2^{2012}+2^{2013}\)
\(\Rightarrow3C=1+2^{2013}\)
\(\Rightarrow C=\frac{1+2^{2013}}{3}\)
Vậy
\(D=-2+2^2-2^3+2^4-...-2^{2019}+2^{2020}\)
\(\Rightarrow-2D=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)
\(\Rightarrow-3D=-2^{2021}+2\)
\(\Leftrightarrow D=\frac{2^{2021}-2}{3}\)
a, 23 + (-2)3+ 8-1
= 8 + (-8)+ 1/8
= 0 +1/8
= 1/8
b, (-1)2019 + (-1)2020
= (-1) + 1
= 0
c,(-3)4 +23
= 81 + 8
= 89
d, 1252 : 25
= (25x5)2 : 25
= 252 x 52 : 25
= (252:25) x 52
= 25 x 25
= 625
=
a) \(2^3+\left(-2\right)^3+8^{-1}=2^3-2^3+\frac{1}{8}\)
\(=\frac{1}{8}\)
b) \(\left(-1\right)^{2019}+\left(-1\right)^{2020}=-1+1\)
\(=0\)
c) \(\left(-3\right)^4+2^3=81+8\)
\(=90\)
d) \(125^2\div25=\frac{\left(25.5\right)^2}{25}\)
\(=\frac{25^2.5^2}{25}\)
\(=25.25\)
\(=625\)