K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

V(tru) =π.R^2/4.R√3
V(cau)=4/3.π.R^3
Vnktru=πR^3(4/3-√3/4)
=πR^3/12.(16-3√3)
Chọn (B).

16 tháng 5 2021

Vtru =π.R^2/4.R√3
 

Vcau=4/3.π.R^3
 

Vnktru=πR^3(4/3-√3/4)
 

=πR^3/12.(16-3√3)
 

Chọn (B).

AH
Akai Haruma
Giáo viên
30 tháng 9 2019

Lời giải:

a)

\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)

\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)

\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)

\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)

\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)

b)

\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)

\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)

\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

a)

\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)

\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)

\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)

\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)

\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)

b)

\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)

\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)

\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)

\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Bạn có thể tham khảo tại đây:

Câu hỏi của Nguyễn Ngọc Gia Hân - Toán lớp 9 | Học trực tuyến

DD
16 tháng 5 2021

Thể tích khối cầu là: \(\frac{4}{3}\pi R^3\)

Độ dài cạnh hình vuông là: \(R\sqrt{2}\).

Thể tích của khối trụ là: \(\left(\frac{R\sqrt{2}}{2}\right)^2\pi\left(R\sqrt{2}\right)=\frac{\pi R^3\sqrt{2}}{2}\)

Phần thể tích khối cầu nằm ngoài khối trụ là: \(\frac{\pi R^3}{6}\left(8-3\sqrt{2}\right)\).

17 tháng 9 2018

Mọi người giúp em với ạ

17 tháng 9 2018

\(R=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

17 tháng 10 2018

\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)

\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(b)\) Ta có : \(R< -1\)

\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)

\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)

\(\Leftrightarrow\)\(4\sqrt{x}< 6\)

\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow\)\(x< \frac{9}{4}\)

Chúc bạn học tốt ~