K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

a/\(5x\cdot\left(x-\frac{1}{3}\right)=0\)

Chia làm 2 TH :

TH 1: \(5x=0\Rightarrow x=0\)

TH 2:\(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(\Rightarrow x\in\left\{0;\frac{1}{3}\right\}\)

b/\(\left(x+\frac{1}{4}\right)\cdot\left(x-\frac{3}{7}\right)=0\)

Chia làm 2 Th 

Th1 : \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)

Th2 :\(x-\frac{3}{7}=0\Rightarrow x=\frac{3}{7}\)

\(\Rightarrow x\in\left\{-\frac{1}{4};\frac{3}{7}\right\}\)

3 tháng 8 2019

1) \(5x\left(x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

2) \(\left(x+\frac{1}{4}\right)\left(x-\frac{3}{7}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x-\frac{3}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)

23 tháng 6 2019

\(a,\frac{21}{36}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(2018-2019\right)^0\)

=\(\frac{7}{12}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(-1\right)\)

= \(\frac{7}{12}.\left(\frac{5}{2}+\frac{2}{7}\right)+\left(-1\right)\)

=\(\frac{7}{12}.\frac{39}{14}+\left(-1\right)\)

=\(\frac{13}{8}+\left(-1\right)\)

= \(\frac{5}{8}\)

\(b,-12\frac{1}{3}-\frac{5}{7}+7\frac{1}{3}+1\frac{5}{7}+1^{2019}\)

=\(-\frac{37}{3}+\frac{-5}{7}+\frac{22}{3}+\frac{12}{7}+1\)

=\(\left(\frac{-37+22}{3}\right)+\left(\frac{-5+12}{7}\right)+=1\)

= \(-5+1+1\)

=\(-3\)

23 tháng 6 2019

câu a sai

28 tháng 4 2019

4a) \(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)

\(\Leftrightarrow x=\frac{1}{10}:\frac{-2}{3}=\frac{1}{10}.\frac{3}{-2}=\frac{3}{-20}\)

Vậy x=\(\frac{3}{-20}\)

b) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)

\(\Leftrightarrow\left(\frac{2}{3}-\frac{3}{2}\right)x=\frac{5}{12}\)

\(\Leftrightarrow\frac{-5}{6}x=\frac{5}{12}\)

\(\Leftrightarrow x=\frac{5}{12}:\frac{-5}{6}=\frac{5}{12}.\frac{6}{-5}=\frac{1}{-2}\)

Vậy x=\(\frac{1}{-2}\)

g)Sửa đề: \(\left|4x-1\right|=\left(-3\right)^2\)

\(\Leftrightarrow\left|4x-1\right|=9\)

\(\Rightarrow\left[{}\begin{matrix}4x-1=9\\4x-1=\left(-9\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{5}{2};-2\right\}\)

i) \(\left(x-1^3\right)=125\)

\(\Leftrightarrow x-1=125\)

\(\Leftrightarrow x=125+1=126\)

Vậy x=126

k) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)

29 tháng 4 2019

xin lỗi câu h tui xin chữa lại là:\(|x+70\%|=2\frac{1}{5}\)

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

30 tháng 6 2017

=> (7+x).(3+x2)=0

TH1:

7+x=0

x=0-7

x=-7

TH2: 3+x2=0

=> \(x\in\)0

Vậy x=-7

21 tháng 3 2019

Bài 1 :

\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)

\(\Leftrightarrow-2x-2-3+3x=4\)

\(\Leftrightarrow x=4+2+3=9\)

Bài 2 :

Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)

Lại có :

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)

Từ (1)(2) , ta có :

\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)

21 tháng 3 2019

Nguyen Ribi Nkok Ngok Khôi Bùi nguyễn ngọc dinh Phùng Tuệ Minh Akai Haruma buithianhtho ?Amanda? Nguyễn Thành Trương Nguyễn Ngô Minh Trí

24 tháng 7 2016

Ta có : 

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)

\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)

\(=\frac{2015}{1}.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)

\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)

Vậy \(x=2015\)

Ủng hộ mk nha !!! ^_^

24 tháng 7 2016

ê cần giúp ko0

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您