Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lê Thị Cẩm Tú
1.3500 = ( 1.3)500 = 35.100= ( 35)100 = 243100
7300 = 73.100 = ( 73)100 = 343100
Dễ thấy 243100 < 343100 nên 1.3500 < 7300
(d) qua A(5; 6) : y = mx - 5m + 6 (1)
(C) : (x - 1)² + (y - 2)² = 1 (2)
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C)
(x - 1)² + (mx - 5m + 4)² = 1
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*)
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2
KL : Có 2 đường thẳng cần tìm
(d1) : y = (3/2)(x - 1)
(d2) : y = 2x - 4
∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★
Ta có : 333^444=(3.111)^444=3^444.111^444
444^333=(4.111)^333=4^333.111^333
Ta lại có : 3^444=(3^4)^111=81^111
4^333=(4^3)^111=64^111
vì 3^444>4^333
mặt khác 111^333<111^444
suy ra 4^333.111^333<3^444.111^444
vậy 333^444>444^333
2300 VÀ 3200
2300 = ( 23)100 = 8100
3200 = ( 32)100 = 9100
VÌ 9100 > 8100 => 2300 < 3200
NHỮNG CON KHÁC BẠ ĐƯA VỀ CÙNG CƠ SỐ SAU ĐÓ SO SÁNH MŨ SỐ LÀ ĐC
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
a. 3111 < 3211 = (25)11 = 255
1714 > 1614 = (24)14 = 256
Mà 255 < 256
=> 3111 < 255 < 256 < 1714
Vậy 3111 < 1714.
b. 3500 = (35)100 = 243100
7200 = (72)100 = 49100
Mà 243100 > 49100
Vậy 3500 > 7200
c. 85 = (23)5 = 215 = 2.214
3.47 = 3.(22)7 = 3.214
Mà 2 < 3 => 2.214 < 3.214
Vậy 85 < 3.47.
a) Ta có: \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
Vì 255<256 => \(31^{11}< 2^{55}< 2^{56}< 17^{14}\)nên 3111<1714
b) Ta có: \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{200}=\left(7^2\right)^{100}=49^{100}\)
Vì \(243^{100}>49^{100}\)nên 3500>7200
c) Ta có: \(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)
Vì 2<3 => 2.214<3.214 =>85<3.47
a) \(2^{24}=2^{3.8}=8^8\) \(3^{16}=3^{2.8}=9^8\)
Do \(8^8< 9^8\)=> \(2^{24}< 3^{16}\)
b) \(3^{200}=3^{2.100}=9^{100}\); \(2^{300}=2^{3.100}=8^{100}\)
Do \(9^{100}>8^{100}\)=> \(3^{200}>2^{300}\)
c) \(7^{20}=7^{4.5}=2401^5>71^5\)
Vậy \(7^{20}>71^5\)
d) \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\); \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)
Do \(8^{10}< 9^{10}\)nên \(\left(-2\right)^{30}< \left(-3\right)^{20}\)
e) \(\left(-5\right)^9< 0\); \(\left(-2\right)^{18}=2^{18}>0\)
Vậy \(\left(-5\right)^9< \left(-2\right)^{18}\)
5300 > 3500
>>>>>>