\(3x^2+4x+1=0\\ \) có 2 nghiệm x1, x2.

B= \(\dfrac{x^1}{x_2-1}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2022

Lời giải:
Áp dụng hệ thức Viet:

$x_1+x_2=\frac{-4}{3}; x_1x_2=\frac{1}{3}$

Khi đó:
\(B=\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=\frac{x_1(x_1-1)+x_2(x_2-1)}{(x_1-1)(x_2-1)}\)

\(=\frac{x_1^2+x_2^2-(x_1+x_2)}{x_1x_2-(x_1+x_2)+1}=\frac{(x_1+x_2)^2-2x_1x_2-(x_1+x_2)}{x_1x_2-(x_1+x_2)+1}\) 

\(=\frac{(\frac{-4}{3})^2-2.\frac{1}{3}-\frac{-4}{3}}{\frac{1}{3}-\frac{-4}{3}+1}=\frac{11}{12}\)

7 tháng 4 2022

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

7 tháng 4 2022

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

NV
25 tháng 12 2018

\(x^2+5x-3=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-5\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2.\left(-3\right)=31\)

a: \(\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(\dfrac{1}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{1}{4}+4}\)

\(=\sqrt{\dfrac{17}{4}}\)

=>\(\left[{}\begin{matrix}x_1-x_2=\dfrac{\sqrt{17}}{2}\\x_1-x_2=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)

c,d:Vì pt có hai nghiệm trái dấu

nên chắc chắn hai biểu thức này sẽ không tính được vì sẽ có một căn bậc hai mà biểu thức trong căn âm

20 tháng 5 2018

@Akai Haruma , @Trần Hoàng Nghĩa giải dùm e vs ạ

27 tháng 5 2018

mn ko cần giải nữa đâu e bk giải r

2 tháng 5 2018

a,b chắc b cx biết lm rồi

AH
Akai Haruma
Giáo viên
1 tháng 4 2018

Lời giải:

PT có \(\Delta'=1+3m^2>0, \forall m\in\mathbb{R}\) nên luôn có hai nghiệm phân biệt với mọi $m$ thực.

Áp dụng định lý Viete cho phương trình bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-3m^2\end{matrix}\right.\)

Để PT có hai nghiệm khác $0$ thì chỉ cần \(x_1x_2\neq 0\Leftrightarrow -3m^2\neq 0\Leftrightarrow m\neq 0\)

Biến đổi:

\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)\(\Leftrightarrow \frac{(x_1-x_2)(x_1+x_2)}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow \frac{2(x_1-x_2)}{-3m^2}=\frac{8}{3}\Rightarrow x_1-x_2=-4m^2\Rightarrow (x_1-x_2)^2=16m^4\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16m^4\)

\(\Leftrightarrow 4+12m^2=16m^4\)

\(\Leftrightarrow 4m^4-3m^2-1=0\Leftrightarrow (m^2-1)(4m^2+1)=0\)

Hiển nhiên \(4m^2+1> 0,\forall m\) nên \(m^2-1=0\Leftrightarrow m=\pm 1\) (thỏa mãn)

 

 

 

 

1 tháng 4 2018

đk bài toán \(\Leftrightarrow\left\{{}\begin{matrix}x_1;x_2\ne0\\\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\f\left(0\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+3m^2\ge0\\-3m^2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne0\)

hằng đẳng thức có \(\Leftrightarrow\dfrac{x_1^2-x_2^2}{x_1.x_2}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1x_2}\)

công thức nghiệm có \(x_{1,2}=1\pm\sqrt{1+3m^2}\)

vi et có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-3m^2\end{matrix}\right.\)

(2) \(\Leftrightarrow\dfrac{2.\left(x_1-x_2\right)}{-3m^2}=\dfrac{8}{3}\) (3)

có -3m^2 <0 mọi m khác 0 =>\(x_1-x_2< 0\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1-\sqrt{1+3m^2}\\x_2=1+\sqrt{1+3m^2}\end{matrix}\right.\)

(3) \(\Leftrightarrow\dfrac{2\left[-2\sqrt{1+3m^2}\right]}{-3m^2}=\dfrac{8}{3}\)

\(\Leftrightarrow\sqrt{3m^2+1}=2m^2\) \(\Leftrightarrow4m^4-3m^2-1=0\)

đặt m^2= t; => t >0

\(\Leftrightarrow4t^2-3t-1=0\left\{a+b+c=0\right\}\)

\(\left[{}\begin{matrix}t_1=1\\t_2=-\dfrac{1}{4}\left(l\right)\end{matrix}\right.\)

kết luận m =+-1

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề