Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-3x^2+9=\left(x^2\right)^2+2.x^2.3+3^2-9x^2=\left(x^2+3\right)^2-\left(3x\right)^2=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
\(x^4-7x^2+1=\left(x^4+2x^2+1\right)-9x^2=\left(x^2+1\right)^2-\left(3x\right)^2=\left(x^2-3x+1\right)\left(x^2+3x+1\right)\)
\(x^3+4x^2-31x-70\)
\(=x^3+2x^2+2x^2+4x-35x-70\)
\(=x^2\left(x+2\right)+2x\left(x+2\right)-35\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x-35\right)\)
\(=\left(x+2\right)\left[x\left(x+7\right)-5\left(x+7\right)\right]=\left(x+2\right)\left(x+7\right)\left(x-5\right)\)
Em làm vậy chưa đúng nhé. Ta cần làm như sau:
\(\frac{x-5}{2x+2}-1>0\Leftrightarrow\frac{x-5-\left(2x+2\right)}{2x+2}>0\)
\(\Leftrightarrow\frac{-x-7}{2x+2}>0\)
Tới đây có thể lập bảng xét dấu hoặc xét trường hợp. Ở đây cô xét trường hợp :
Với \(x\le-7:-x-7\ge0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}\le0\left(l\right)\)
Với \(-7< x< -1:-x-7< 0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}>0\left(n\right)\)
Với \(x>-1:-x-7< 0;2x+2>0\Rightarrow\frac{-x-7}{2x+2}< 0\left(l\right)\)
Vậy \(-7< x< -1\)
Bài 1 :
\(x^2\left(x-3\right)-4x+12=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)
Bài 2 :
\(x-1-x^2\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)
\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)
\(\left(x-5\right)\left(2x-1-x+5\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)
Ta có: \(5⋮5\)
\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)
\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)
đpcm
Do xe máy khởi hành trước ô tô 1 giờ nên khi ô tô và xe máy gặp nhau sau x giờ kể từ khi ô tô khởi hành thì thời gian xe máy đi được đến lúc gặp nhau là: x + 1 (giờ)
Quãng đường ô tô đi được là 48x (km)
Quãng đường xe máy đi được là: 32(x+1) (km)
Mà hai quãng đường trên bằng nhau nên ta có phương trình:
48x = 32(x+1)
Vậy phương trình biểu thị việc ô tô gặp xe máy sau x giờ, kể từ khi ô tô khởi hành là: 48x = 32(x+1)