Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x/3=y/4, suy ra: 2x/36=y/24
Từ y/6=z/5, suy ra: y/24=z/20
Suy ra: 2x/36=y/24=z/20
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
2x/36=y/24=z/20=2x+y-z/36+24-20=60/40=1.5
Khi đó:
2x/36=1.5 ->x=27
y/24=1.5 ->y=36
z/20=1.5 ->z=30
Vậy x=27,y=36,z=30
\(\Leftrightarrow\dfrac{1}{x-4}-\dfrac{1}{x-7}+\dfrac{1}{x-7}-\dfrac{1}{x-13}+\dfrac{1}{x-13}-\dfrac{1}{x-28}-\dfrac{1}{x-28}=\dfrac{-5}{2}\)
\(\Leftrightarrow\dfrac{1}{x-4}-\dfrac{2}{x-28}=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x-28-2x+8}{\left(x-4\right)\left(x-28\right)}=\dfrac{-5}{2}\)
\(\Leftrightarrow-5\left(x^2-32x+112\right)=2\left(-x-20\right)\)
\(\Leftrightarrow-5x^2+160x-560=-2x-40\)
\(\Leftrightarrow-5x^2+162x-520=0\)
\(\text{Δ}=162^2-4\cdot\left(-5\right)\cdot\left(-520\right)=15844\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{162-2\sqrt{3961}}{10}\\x_2=\dfrac{162+2\sqrt{3961}}{10}\end{matrix}\right.\)
\(\frac{x}{-28}=\frac{4}{7}\)
\(\Rightarrow7x=4.\left(-28\right)\)
\(\Rightarrow7x=-112\)
\(\Rightarrow x=\frac{-112}{7}\)
\(\Rightarrow x=-16\)
vậy \(x=-16\)
\(\frac{x}{\left(-28\right)}=\frac{4}{7}\) \(\Rightarrow\)\(_{_{ }^{ }x.7=4.\left(-28\right)\Rightarrow}\)7x=-112\(\Rightarrow\)x=\(\frac{-112}{7}\)\(\Rightarrow\)x=-16
\(\frac{x}{2}=\frac{y}{-5}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}\)\(=\frac{x-y}{2-\left(-5\right)}\)\(=\frac{-7}{7}=-1\)
=> x= -1.2=-2
y=-1.-5=5
a) x : 2 = y : (-5) =>\(\frac{x}{2}=\frac{y}{-5}\)
Theo đề tao có\(\frac{x}{2}=\frac{y}{-5}v\text{à}x-y=-7\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{2+5}=\frac{-7}{7}=-1\)
x = -1 . 2 = -2
y = -1 . (-5) = 5
Vậy x = -2 và y = 5
b) Theo đề ta có\(\frac{x}{3}=\frac{y}{4}v\text{à}x+y=28\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
x = 4 . 3 = 12
y = 4 . 4 = 16
Vậy x = 12 và y = 16
Tìm x, biết:
a, \(\frac{x}{28}=\frac{-4}{7}\)
\(\Leftrightarrow x.7=\left(-4\right).28\)
\(\Leftrightarrow7x=-112\)
\(\Leftrightarrow x=-16.\)
Vậy x = - 16.
b, \(\left|x+\frac{4}{5}\right|-\frac{2}{5}=\frac{3}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=\frac{3}{5}+\frac{2}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{4}{5}=1\\x+\frac{4}{5}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\frac{4}{5}\\x=-1-\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{5}-\frac{1}{5}\\x=\frac{-5}{5}-\frac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{-9}{5}\end{matrix}\right.\)
Vậy \(x=\frac{1}{5}\)hoặc \(x=\frac{-9}{5}\).
Chúc bạn hok tốt!!! lưu khánh huyền
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
a)\(\frac{x-2}{16}=\frac{-4}{2-x}\)
\(\Rightarrow\frac{x-2}{16}=\frac{4}{x-2}\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)=16.4\)
\(\Rightarrow\left(x-2\right)^2=64\)
Mà ta có: \(64=\left(\pm8\right)^2\)
Suy ra: \(\orbr{\begin{cases}\left(x-2\right)^2=8^2\\\left(x-2\right)^2=\left(-8\right)^2\end{cases}\Rightarrow\orbr{\begin{cases}x-2=8\\x-2=-8\end{cases}\Rightarrow}\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Vậy x = 10 hoặc x = -6
b) \(\left(2x+7\right)^2-28=64\)
\(\Rightarrow\left(2x+7\right)^2=64+28=92\)
Mà: \(92=\left(\pm2\sqrt{23}\right)^2\)
Nên \(\orbr{\begin{cases}2x+7=2\sqrt{23}\\2x+7=-2\sqrt{23}\end{cases}\Rightarrow\orbr{\begin{cases}2x=2\sqrt{23}-7\\2x=-2\sqrt{23}-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2\sqrt{23}-7}{2}\\x=-\frac{7+2\sqrt{23}}{2}\end{cases}}}\)
Vậy .....
(Bạn xem lại đề nha, kết quả bài b lẻ quá nhưng cách làm vẫn vậy nha!)
Đề sai rồi bạn