Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*với y=0 => để x+y nhỏ nhất <=> x nhỏ nhất => A^2 nhỏ nhất
mà A^2= 65+ 2^x
=> A^2 lẻ
=> A^2= 81 => 2^x=16 => x=4
khi đó x+y=4
*với x=0, lập luận tương tự => A^2= 65+ 8^y
+, A^2=81 => 8^y=16 => ko có y...
+, A^2=121 => 8^y=56 => ko có
+, A^2=169 => 8^y=104 => ko có...
(đến đây ko xét A^2 nữa vì nếu thỏa mãn thì x+y nhỏ nhất cũng =4)
+, với y khác 0 => A^2 chẵn mặt khác 2^x < 2^3y với x;y khác 0 và x+y<4
=> để x+y nhỏ nhất <=> x nhỏ nhất và y lớn nhất
tức y thuộc {1;2} và x thuộc {0;1}
=> 64<A^2 < 64+64+2=130
=> A^2=100 => 2^x+8^y= 36 => y=1 => 2^x=28 => loại
vậy...
Câu hỏi của Trần Đại Nghĩa - Toán lớp 6 - Học toán với OnlineMath
Tham khảo bài của cô Chi nhé
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
Bài 1 :
Lý luận chung cho cả 2 câu a) và b) :
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0
a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
Câu 1:
a) Để x+2020 là số nguyên âm lớn nhất thì x+2020=-1
hay x=-1-2020=-2021
Vậy: x=-2021 thì x+2020 là số nguyên âm lớn nhất
b) Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+15\ge15\forall x\)
Dấu '=' xảy ra khi |x|=0 hay x=0
Vậy: Giá trị nhỏ nhất của biểu thức M=|x|+15 là 15 khi x=0
d) Ta có: \(\left(x-11\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-11\right)^2-200\ge-200\forall x\)
Dấu '=' xảy ra khi \(\left(x-11\right)^2=0\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-11\right)^2-200\) là -200 khi x=11
e) Ta có: \(\left(x+81\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+81\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+81\right)^2+3456\le3456\forall x\)
Dấu '=' xảy ra khi \(\left(x+81\right)^2=0\Leftrightarrow x+81=0\Leftrightarrow x=-81\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(x+81\right)^2+3456\) là 3456 khi x=-81
Câu 2:
a) Ta có: x(x-2)=-1
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
câu hỏi hay chắc cần dùng đến IQ😀
Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)
=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)
Vì A thuộc N.
Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)
=> \(2^x+2^{3y}=17\)là số lẻ
Do x, y thuộc N nên xảy ra hai trường hợp hoặc là x=0, hoặc là y=0
+) Với x=0
ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)
+) Với y=0
ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)
Khi đó x+y=4
Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N
Xét các trường hợp :
+) y=0, x<4 loại
+) y=1, x<3 loại
+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)
+) y=2, x=1 => \(2^6+2+2^6=130\)(loại)
+) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)
Vậy giá trị nhỏ nhất cần tìm là x+y=4