K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

1)Từ đề bài:

`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`

`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`

`<=>a=b=c-2`

17 tháng 5 2021

`ab+bc+ca=abc`

`<=>1/a+1/b+1/c=1`

`<=>(1/a+1/b+1/c)^2=1`

`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`

`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`

`a+b+c=0`

Chia 2 vế cho `abc`

`=>1/(ab)+1/(bc)+1/(ca)=0`

`=>2/(ab)+2/(bc)+2/(ca)=0`

`=>1/a^2+1/b^2+1/c^2=1-0=1`

7 tháng 8 2017

1) Theo đề bài ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)

\(\Rightarrow\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)

\(=\dfrac{a^2+b^2+c^2}{\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{6}}}\)

\(=\dfrac{24309}{1,906...}\)

Đến đây thấy đề sai:v

2) Gọi tuổi của 3 anh em lần lượt là \(a;b;c\)

Theo đề bài ta có:

\(\dfrac{3}{4}a=\dfrac{2}{3}b=\dfrac{1}{2}c\)

\(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{3}{4}a:\dfrac{2}{3}=\dfrac{9}{8}a\\c=\dfrac{3}{4}a:\dfrac{1}{2}=\dfrac{3}{4}a\end{matrix}\right.\)

\(\Rightarrow a+\dfrac{9}{8}a+\dfrac{3}{4}a=58\)

\(\Rightarrow\dfrac{22}{8}a=58\)

\(a=\dfrac{232}{11}\)

cả 2 câu là đề sai hay mk tính sai,chẳng hiểu j

7 tháng 8 2017

Bài 1:

Ta có:

\(a:b:c=\dfrac{2}{5}:\dfrac{3}{4}:\dfrac{1}{6}\)

\(\Rightarrow\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\Rightarrow\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}\)

\(=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=5184\\b^2=18225\\c^2=900\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\pm72\\b=\pm135\\c=\pm30\end{matrix}\right.\)

Vậy...........

Chúc bạn học tốt!!!

3 tháng 12 2019

1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)

\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)

Vậy \(x=5\)

2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)\(b=c\)\(c=a\)\(\Rightarrow a=b=c\)

3 tháng 12 2019

Câu 1:

\(2^{x+2}-96=2^x\)

\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)

\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)

\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)

\(\Rightarrow x=2\)

Câu 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)

\(\Rightarrow a=b=c\)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

26 tháng 8 2018

1.

a)\(-49+\left(-\dfrac{5}{6}\right)-\dfrac{17}{4}\)

\(=-49-\dfrac{5}{6}-\dfrac{17}{4}\)

\(=\dfrac{-588}{12}-\dfrac{10}{12}-\dfrac{51}{12}\)

\(=\dfrac{-588-10-51}{12}\)

\(=-\dfrac{649}{12}\)

b) \(5\dfrac{1}{2}+\left(-3\right)\)

\(=\dfrac{11}{2}-3\)

\(=\dfrac{11}{2}-\dfrac{6}{2}\)

\(=\dfrac{11-6}{2}\)

\(=\dfrac{5}{2}\)

c) \(4\dfrac{9}{11}+\left(2-2\dfrac{1}{11}\right)\)

\(=\dfrac{53}{11}+2-\dfrac{23}{11}\)

\(=\dfrac{53-23}{11}+2\)

\(=\dfrac{30}{11}+2\)

\(=\dfrac{30}{11}+\dfrac{22}{11}\)

\(=\dfrac{30+22}{11}\)

\(=\dfrac{52}{11}\)

26 tháng 8 2018

2.

a) \(4,3-1,2=3,1\)

b) \(0-\left(-0,4\right)=0+0,4=0,4\)

c) \(-\dfrac{2}{3}-\dfrac{-1}{3}=-\dfrac{2}{3}+\dfrac{1}{3}=-\dfrac{1}{3}\)

d) \(-\dfrac{1}{2}-\dfrac{-1}{6}=-\dfrac{1}{2}+\dfrac{1}{6}=-\dfrac{3}{6}+\dfrac{1}{6}=-\dfrac{2}{6}=-\dfrac{1}{3}\)

26 tháng 8 2018

1.

a) \(-\dfrac{4}{9}+\left(-\dfrac{5}{6}\right)-\dfrac{17}{4}=-\dfrac{16}{36}-\dfrac{30}{36}-\dfrac{153}{36}\)

\(=-\dfrac{199}{36}\)

b) \(5\dfrac{1}{2}+\left(-3\right)=5\dfrac{1}{2}-3=\dfrac{11}{2}-\dfrac{6}{2}=\dfrac{5}{2}\)

c) \(4\dfrac{9}{11}+\left(-2\dfrac{1}{11}\right)=\dfrac{53}{11}-\dfrac{23}{11}=\dfrac{30}{11}\)

26 tháng 8 2018

2.

a) \(4,3-\left(1,2\right)=3,1\)

b) \(0-\left(-0,4\right)=0+0,4=0,4\)

c) \(-\dfrac{2}{3}-\dfrac{1}{3}=-\dfrac{3}{3}=-1\)

d) \(-\dfrac{1}{2}-\dfrac{-1}{6}=-\dfrac{1}{2}+\dfrac{1}{6}=-\dfrac{3}{6}+\dfrac{1}{6}=-\dfrac{2}{6}=-\dfrac{1}{3}\)

16 tháng 10 2022

Câu 2: 

Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)

=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc

=>9ac-9b^2=0

=>ac-b^2=0

=>ac=b^2

=>a/b=b/c