K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

16x4 - 64 = 16(x4 - 4) = 16[(x2)2 - 22] = 16(x2 - 2)(x2 + 2) = 16[x2 -\(\left(\sqrt{2}\right)^2\)](x2 + 2) = 16\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)

\(16x^4-64\)

\(=16\left(x^4-4\right)\)

\(=16\left(x^2-2\right)\left(x^2+2\right)\)

\(=16\left(x^2-\left(\sqrt{2}\right)^2\right)\left(x^2+2\right)\)

\(=16\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)

Bài này ra kết quả trên là lớp 9 . Còn lớp 8 là : \(16\left(x^2-2\right)\left(x^2+2\right)\)

c: \(\left(n-2\right)^2-\left(n+3\right)\left(n-3\right)=4\left(n-1\right)\)

\(\Leftrightarrow n^2-4n+4-n^2+9=4n-4\)

=>-4n+13=4n-4

=>-8n=-17

hay n=17/8

a: \(\left(n-2\right)\left(n+2\right)+6\left(n-1\right)=\left(n+1\right)^2\)

\(\Leftrightarrow n^2-4+6n-6=n^2+2n+1\)

=>6n-10=2n+1

=>4n=11

hay n=11/4

d: \(2\left(3-x\right)-3\left(x-1\right)=4\left(x-3\right)\)

=>6-2x-3x+3=4x-12

=>-5x+9=4x-12

=>-9x=-21

hay x=7/3

 

14 tháng 2 2018

Tự đăng tự giải hả

21 tháng 8 2021

Tại x = 16 => x +1 = 17

Thay vào A ta được:

A = x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 20

A= x4 -(x4 + x3)  + (x3 + x2)  -(x2 + x) +20

A= x4 - x4 - x3 + x3 + x2 - x2 -x + 20

A= - x+20

Mà  x = 16

=> A= -16 + 20 = 4

Vậy A= 4 khi x =16

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)