1.2+2.3+3.4+…+99.100

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2024

Đặt A = 1.2+2.3 +.......+99.100

Ta có:

3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3

3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)

3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +...+ 98.99.100)

3A = 99.100.101 - 0.1.2

3A = 999900 - 0

3A= 999900

A= 999900 : 3

A = 333300

Vậy A = 333300

7 tháng 5 2024

Đặt \(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-98.99.100+99.100.101\)

\(=99.100.101\)

\(=999900\)

\(\Rightarrow A=\dfrac{999900}{3}=333300\)

 

2 tháng 4 2018

Ta có: \(S=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)

\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)

\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3S=99.100.101\)

\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

2 tháng 4 2018

S=  1.2 + 2.3 +... + 99.100

=>S= \(\frac{99.100.101}{3}\)=333300

đặt A=1.2+2.3+...+99.100

=>3A=1.2.3+2.3.3+...+99.100.3

=1.2.3+2.3.(4-1)+...+99.100(101-98)

=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100

=99.100.101=999900

=>A=999900:3=333300

2 tháng 9 2015

Bài này mình vừa giải :D http://olm.vn/hoi-dap/question/185493.html  -- số khác

Ta có 3 x S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3

3 x S = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)

3 x S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 +  3 x 4 x 5 - 2 x 3 x 4 + .. + 99 x 100 x 101 - 98 x 99 x 100

=> 3 x S = 99 x 100 x 101 

=> A = 33 x 100 x 101 = 333300

4 tháng 2 2017

=333300 nhe

12 tháng 3 2017

5x-5x=0x=0

12 tháng 3 2017

5x-5x=0

chuc ban hoc tot 

14 tháng 3 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{99.100}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2.\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)

14 tháng 3 2017

=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)

=\(2\left(1-\frac{1}{100}\right)\)

=\(2\cdot\frac{99}{100}=\frac{99}{50}\)

31 tháng 3 2019

Làm bậy, mà đúng

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

31 tháng 3 2019

\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)\(\frac{1}{4.5}\)+ … + \(\frac{1}{99.100}\)

\(\frac{1}{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)-\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+ … + \(\frac{1}{99}\)\(\frac{1}{100}\)

\(\frac{1}{1}\)\(\frac{1}{100}\)

\(\frac{99}{100}\)

22 tháng 6 2020

\(A=\frac{10}{1.2}+\frac{10}{2.3}+\frac{10}{3.4}+...+\frac{10}{98.99}+\frac{10}{99.100}\)

\(A=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=10.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=10.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(A=10.\frac{99}{100}\)

\(A=\frac{99}{10}\)

Học tốt 

22 tháng 6 2020

a= \(10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

a=\(10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

a=\(10.\left(1-\frac{1}{100}\right)\)

a=\(\frac{99}{10}\)