Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)
\(n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)
Bài 1 :
Số số hạng của B là :
(99 - 1 ) : 1 + 1 = 99 ( số )
Tổng B là :
( 99 + 1 ) x 99 : 2 = 4950
Đ/s:......
Bài 2 :
Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )
Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000
Đ/s:.....
\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)
=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
mình quên rồi có gì các bạn chỉ dùm
A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3
B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4
easy như 1 trò đùa
Ta có công thức:
a13 + a23 + a33 + ... = (a1 + a2 + a3 + ...)2
=> 13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2 = 102 chia hết cho 5
=> n = 3
Đặt \(A=1^n+2^n+3^n+4^n\)
Nếu \(n=0\Rightarrow A=4\)( loại )
Nếu \(n=1\Rightarrow A=10\)( thỏa )
Nếu \(n>2\)
\(TH1:\)\(n\) chẵn \(\Rightarrow n=2k\left(k\in N\right)\)
\(\Rightarrow A=1+2^{2k}+3^{2k}+4^{2k}=1+4^k+9^k+16^k\)
Với \(k\)lẻ \(\Rightarrow k=2m+1\)
\(\Rightarrow\)\(A=1+4^{2m+1}+9^{2m+1}\)\(=\)\(1+16^m.4+81^m.9+256^m.16\)
\(TH2:\)\(n\)lẻ \(\Rightarrow n=2h+1\)
\(\Rightarrow A=1+16^h.4+81^h.9+256^h.16\)
Tương tự như trên, ta cũng chứng minh đc A ko chia hết cho 5
Vậy \(n=1\)thỏa mãn
a) Giải: Ta có: -n2+ 3n – 7 = -n.(n + 2) + 5n – 7 = -n(n + 2) + 5.(n + 2) -17 Để -n2+ 3n -7 chia hết cho n+2 thì 17 ⋮ n + 2 => n + 2 ∈ Ư(17) = {-17; -1; 1; 17} => n ∈ {-19; -3; -1; 15}. Kết luận: n ∈ {-19; -3; -1; 15}.
b)
a có:
n+3 2n-2
2(n+3) 2n-2
2n+6 2n-2
2n+(8-2) 2n-2
2n+8-2 2n-2
(2n-2)+8 2n-2
Vì 2n-2 2n-2
Nên để (2n-2)+8 2n-2 thì:
8 2n-2
⇒ (2n-2) Ư(8)={1; 2; 4; 8}
¤ Nếu: 2n-2=1
2n =1+2
2n =3
n =
¤ Nếu: 2n-2=2
2n =2+2
2n =4
n =4:2
n =2
¤ Nếu: 2n-2=4
2n =4+2
2n =6
n =6:2
n =3
¤ Nếu: 2n-2=8
2n =8+2
2n =10
n =10:2
n =5
Vậy: n {2; 3; 5}
a) Vì BE là đường trung tuyến \(\Delta ABC\) => AE = CE
CF là đường trung tuyến \(\Delta ABC\) => AF = BF
mà AB = AC ( \(\Delta ABC\) cân tại A )
Do đó: AE = CE = AF = BF
Xét \(\Delta ABE\) và \(\Delta ACF\) có:
AB = AC (gt)
\(\widehat{A}\) (chung)
AE = AF (cmt)
Do đó : \(\Delta ABE=\Delta ACF\left(c-g-c\right)\)
=> BE = CF (hai cạnh tương ứng)
b) Gọi H là giao điểm của AG và BC
Vì BE và CF là hai đường trung tuyến \(\Delta ABC\)
mà BE và CF cắt nhau tại G
=> G là trọng tâm
=> AH là đường trung tuyến \(\Delta ABC\)
=> BH = CH
mà \(\Delta ABC\) cân
=> AH là đường cao \(\Delta ABC\)
Xét \(\Delta GBH\) và \(\Delta GCH\) có:
GH (chung)
\(\widehat{BHG}=\widehat{CHG}=90^0\)
BH = CH (cmt)
Do đó: \(\Delta BGH=\Delta CGH\) (c - g - c )
=> BG = CG ( hai cạnh tương ứng )
=> \(\Delta BGC\) cân tại G
a. Ta có: AE = 1/2 AC (BE là đường trung tuyến của AC)
AF = 1/2 AB (CF là đường trung tuyến của AB)
Mà AB = AC (tam giác ABC cân tại A)
=> AE = AF
Xét tam giác ABE và tam giác ACF có:
AB = AC (tam giác ABC cân tại A)
Góc BAC chung
AE = AF (cmt)
=> tam giác ABE = tam giác ACF (c.g.c)
=> BE = CF
b. Xét tam giác ABC có :
BE và CF là hai đường trung tuyến của tam giác ABC
BE và CF cắt nhau ở G
=> G là trọng tâm của tam giác ABC
=> BG = 2/3 BE ; CG = 2/3 CF
Mà BE = CF (câu a)
=> BG = CG
=> tam giác BGC cân tại G
Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$
Nếu $n=4k$ thì:
$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$
$=1+16^k+81^k+16^{2k}$
$\equiv 1+1+1+1\equiv 4\pmod 5$
---------------
Nếu $n=4k+1$
$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$
$=1+16^k.2+81^k.3+16^{2k}.4$
$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$
Nếu $n=4k+2$
$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$
$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$
$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$
Nếu $n=4k+3$
$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$
$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$
$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$
Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$