Một đội công nhân theo kế hoạch phải trồng 70 ha rừng trong một số tuần lễ. Thực t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 5 2021

Gọi số héc-ta rừng đội công nhân đó trồng theo kế hoạch mỗi tuần là \(x\left(ha\right),x>0\).

Theo kế hoạch thì trồng xong trong số tuần là: \(\frac{70}{x}\)(tuần)

Theo bài ra ta có phương trình: 

\(\left(\frac{70}{x}-2\right)\left(x+5\right)=75\)

\(\Rightarrow\left(70-2x\right)\left(x+5\right)=75x\)

\(\Leftrightarrow-2x^2-15x+350=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\left(tm\right)\\x=-17,5\left(l\right)\end{cases}}\).

Vậy theo kế hoạch mỗi tuần đội công nhân đó trồng \(10ha\)rừng. 

20 tháng 4 2020

Đặt mỗi tuần trồng được x (ha); y là số tuần phải làm (y ≥ 1)
Ta có hệ : xy = 75 (1); (x+5) (y-1) = 80 (2)
Từ (1) ⇒ x = \(\frac{75}{y}\) thay vào 2 giải ra \(\left[{}\begin{matrix}y=5\left(tm\right)\\y=-3\left(l\right)\end{matrix}\right.\)
⇒ x = 15 (ha)

17 tháng 6 2018

Gọi diện tích rừng mà mỗi tuần lâm trường dự định trồng là x (ha) (Điều kiện:x >0)

Theo dự định, thời gian trồng hết 140 ha rừng là 140/x  (tuần)

Vì mỗi tuần lâm trường trồng vượt mức 4 ha so với dự định nên thực tế mỗi tuần lâm trường trồng được x + 4 (ha)

Do đó thời gian thực tế lâm trường trồng hết 144 ha rừng là: 144/(x+4) (tuần)

Vì thực tế lâm trường trồng xong sớm so với dự định là 2 tuần nên ta có phương trình:

Vậy mỗi tuần lâm trường dự định trồng 14 ha rừng

Đáp án: B

goi thoi gian moi doi phai lam theo ke hoach la x( ngay,x>0)

thoi gian doi 1 da lam la x-2 (ngay)

thoi gian doi 2 da lam la x+2 ( ngay )

moi ngay doi 1 trong duoc 40x240x−2(ha)

moi ngay doi 2 trong duoc 90x+290x+2(ha)

neu doi 1 lam xong x+2 ngay thi trong duoc 40x2(x+2)40x−2(x+2)(ha)

nếu đội 2 làm xong x-2 ngày thì trồng được

90x+2(x2)(ha)90x+2(x−2)(ha)

theo de bai thi dien h rung trong duoc cua 2 doi la bang nhau nen ta co pt:

40x2(x+2)=90(x+2)(x2)40x−2(x+2)=90(x+2)(x−2)

=> x=10 hoac x=2/5

x2>2=> x=2/5 loai

22 tháng 5 2018

Gọi diện tích rừng mà mỗi tuần lâm trường dự định trồng là x (ha) (Điều kiện:x >0)

Theo dự định, thời gian trồng hết 75 ha rừng là 75/x (tuần)

Vì mỗi tuần lâm trường trồng vượt mức 5ha so với dự định nên thực tế mỗi tuần lâm trường trồng được x + 5 (ha)

Do đó thời gian thực tế lâm trường trồng hết 80 ha rừng là: 80/(x+5) (tuần)

Vì thực tế lâm trường trồng xong sớm so với dự định là 1 tuần nên ta có phương trình:

Vậy mỗi tuần lâm trường dự tính trồng 15 ha rừng

Đáp án: D

BÀI 1 một đội công nhân hoàn thành công việc với mức 420 ngày công. hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để hoàn thành công việc sẽ giảm đi 7 ngày BÀI 2: Hai xưởng sản xuất theo kế hoạch phải làm 360 sản phẩm nhưng thực tế xưởng I và xưởng II đã vượt mức lần lượt 12% và 10% so với kế hoạch , nên cả hai xưởng đã làm được tổng...
Đọc tiếp

BÀI 1 
một đội công nhân hoàn thành công việc với mức 420 ngày công. hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để hoàn thành công việc sẽ giảm đi 7 ngày 

BÀI 2: Hai xưởng sản xuất theo kế hoạch phải làm 360 sản phẩm nhưng thực tế xưởng I và xưởng II đã vượt mức lần lượt 12% và 10% so với kế hoạch , nên cả hai xưởng đã làm được tổng cộng 400 sản phẩm .Tính số sản phẩm mà mỗi xưởng phải làm theo kế hoạch

BÀI 3: Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định .Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian qui định 1 ngày và chở thêm được 10 tấn .Hỏi theo kế hoạch đội xe chở hết hàng hết bao nhiêu ngày 

bài 4: một nhóm học sinh tham gia lao động chuyển 150 bó sách về thư viện của nhà trường .Đến buổi lao động có 2 bạn bị ốm không tham gia lao động được , vì vậy mỗi bạn còn lại phải chuyển thêm 6 bó nữa mới hết số sách cần chuyển biết rằng mỗi học sinh phải chuyển số bó sách bằng nhau .Tìm số học sinh của nhóm đó

1
27 tháng 2 2020

Bài 1 :

Gọi số người của đội là \(x\) người \(\left(x\inℕ^∗\right)\)
Thời gian làm theo kế hoạch là \(\frac{420}{x}\) ngày
Số người lúc sau là \(x+5\)  người 
Thời gian hoàn thành lúc sau là \(\frac{420}{x+5}\) ngày 
Vì thời gian giảm 7 ngày nên ta có phương trình :

\(\frac{420}{x}-7=\frac{420}{x+5}\)

\(\Leftrightarrow420\left(x+5\right)-7x\left(x+5\right)=420x\)

\(\Leftrightarrow420x+2100-7x^2-35x-420x\)

\(\Leftrightarrow7x^2+35x-2100=0\)

\(\Leftrightarrow x^2+5x-300=0\)

\(\Leftrightarrow\left(x+20\right)\left(x-15\right)=0\)

\(\Leftrightarrow x=15\) \(\left(x\inℕ^∗\right)\)

Vậy số người của đội là 15 người.

15 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

14 tháng 5 2023

nhầm người rồi

17 tháng 4 2018

Gọi x là số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo kế hoạch

(x ∈ ℕ * , x < 84)

Số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo thực tế: x + 2

Thời gian mà công nhân hoàn thành theo kế hoạch: 84/x (h)

Thời gian mà công nhân hoàn thành theo thực tế: 84/(x+2) (h)

Người công nhân đó hoàn thành công việc sớm hơn dự định 1 giờ nên ta có phương trình:

Vậy theo kế hoạch mỗi giờ người công nhân phải làm 12 sản phẩm

Đáp án: B