Tìm 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2016

\(\frac{x}{9}=\frac{3}{x^2}\)

=> \(3.9=x.x^2\)

=> 27 = \(x^3\)

=> x = 3

20 tháng 1 2016

Em  ms có lớp thôi !

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:

$\frac{x}{y}=\frac{7}{10}\Rightarrow \frac{x}{7}=\frac{y}{10}$

$\frac{y}{z}=\frac{5}{8}\Rightarrow \frac{y}{5}=\frac{z}{8}$
$\Rightarrow \frac{x}{7}=\frac{y}{10}=\frac{z}{16}$
Áp dụng TCDTSBN:

$\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{96}{32}=3$

$\Rightarrow x=7.3=21; y=10.3=30; z=16.3=48$

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Bài 2:

Áp dụng TCDTSBN:

$\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{z}{5}$

$=\frac{2x-3y+z}{6-12+5}=\frac{7}{-1}=-7$

$\Rightarrow x=(-7).3=-21; y=4(-7)=-28; z=5(-7)=-35$

22 tháng 6 2021

Ta có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)

=> M > 1 (1)

Lại có \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Khi đó  \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)

=> M > 2(2)

Từ (1) và (2) => 1 < M < 2

=> M không là số tự nhiên 

22 tháng 6 2021

trong tkhđ của mình có nhé 

DD
11 tháng 6 2021

\(\frac{x}{3}=\frac{y}{5}=t\Leftrightarrow\hept{\begin{cases}x=3t\\y=5t\end{cases}}\).

\(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3t\right)^2+3.\left(5t\right)^2}{10.\left(3t\right)^2-3.\left(5t\right)^2}=\frac{120t^2}{15t^2}=8\)

3 tháng 9 2018

1, <0

2, <0

3, >0

4, >0

1 tháng 11 2019

không rõ đề bài

10 tháng 1 2016

Theo tinh chat day ti so bang nhau ta co

\(\frac{X-Y}{2-3}=\frac{-2}{-1}=2\)

Do do : X\(=\frac{X}{2}\Rightarrow X=2\cdot2=4\)

           Y = \(\frac{Y}{3}\Rightarrow Y=3\cdot2=6\)

Nho tick nha

29 tháng 11 2017

a5 = 5 vi tat ca phep cchia deu = 1