Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\Rightarrow2\left(5x-2\right)=3\left(5-3x\right)\)
\(\Leftrightarrow10x-4=15-9x\)
\(\Leftrightarrow10x+9x=15+4\)
=> 19x = 19
=> x = 1
Ta có :
\(\Leftrightarrow\frac{10x+3}{12}=\frac{9}{9}+\frac{6+8x}{9}\)
\(\Leftrightarrow\frac{10x+3}{12}=\frac{15+8x}{9}\)
=> (10x + 3)9 = (15 + 8x).12
=> 90x + 27 = 180 + 96x
=> 90x - 96x = 180 - 27
=> -6x = 153
=> -x = 25,5
=> x = -25,5
a) \(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{3}-2\)
b) \(\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}=\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)=\frac{4}{x-4}\)
a, \(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}=\sqrt{3}-\sqrt{4}\)
b, Với x > 0 ; x \(\ne\)4
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right)\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}\pm2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+4}{\left(\sqrt{x}\pm2\right)}=\frac{6}{\left(\sqrt{x}\pm2\right)}\)
a) x2- y2-x2+2xy-y2= (x-y)(x+y)-(x-y)2= (x-y)(x+y-x+y)= 2y(x-y)
b) x6+x4+x2y2= x2(x3+x2+y2)
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)
Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)
Lấy (2) trừ (1) ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)
=> 2x = 48
<=> x = 24
Thay x = 24 vào (2) ta có:
\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)
=> y = 48
Vậy ...
Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)
<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)
<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)
Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)
Trừ (2) cho (1) vế theo vế ta được:
\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48
Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24
Vậy x =24 ; y =48
Có 20 học sinh nữ đang xếp thành một hàng thì có 4 học sinh nam chen vào hàng. Mỗi một học sinh nam đếm số bạn nữ đứng trước mình thì các con số thu được là 17, 14, 5 và 2 tương ứng. Mỗi một học sinh nữ cũng đếm số học sinh nam đứng trước mình. Hỏi tổng số các số mà các bạn nữ đếm được là bao nhiêu?