Vẽ các đường thẳng sau trên cùng 1 hệ trục tọa độ,sau đó tính khoảng cách từ gốc O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Vẽ đường thẳng y=-3x-3

loading...

y=-3-3x

=>3x+y+3=0

Khoảng cách từ O đến đường thẳng y=-3x-3 là:

\(\dfrac{\left|0\cdot3+0\cdot1+3\right|}{\sqrt{3^2+1^2}}=\dfrac{3}{\sqrt{10}}\)

b:

Vẽ đường thẳng y=x

loading...

y=x

=>x-y=0

Khoảng cách từ O(0;0) đến đường thẳng y=x là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+0\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{2}}=0\)

c:

Vẽ đồ thị y=-x

loading...

y=-x

=>x+y=0

Khoảng cách từ O(0;0) đến đường thẳng y=-x là:

\(\dfrac{\left|0\cdot1+0\cdot1+0\right|}{\sqrt{1^2+1^2}}=0\)

d:

Vẽ đồ thị hàm số y=1/2x

loading...

y=1/2x

=>1/2x-y=0

Khoảng cách từ O(0;0) đến đường thẳng y=1/2x là:

\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)+0\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{\dfrac{1}{4}+1}}=0\)

a:

Vẽ đồ thị y=2-x

loading...

y=2-x

=>y+x-2=0

=>x+y-2=0

Khoảng cách từ O đến đường thẳng x+y-2=0 là:

\(d\left(O;x+y-2=0\right)=\dfrac{\left|0\cdot1+0\cdot1-2\right|}{\sqrt{1^2+1^2}}\)

\(=\dfrac{2}{\sqrt{1+1}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

b:

Vẽ đồ thị y=2x+1

loading...

y=2x+1

=>2x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng y=2x+1 là:

\(\dfrac{\left|0\cdot2+0\cdot\left(-1\right)+1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{4+1}}=\dfrac{\sqrt{5}}{5}\)

c: 

Vẽ đồ thị \(y=\dfrac{x-2}{2}\)

loading...

\(y=\dfrac{x-2}{2}\)

=>x-2=2y

=>x-2y-2=0

Khoảng cách từ O(0;0) đến đường thẳng \(y=\dfrac{x-2}{2}\) là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-2\right)-2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\dfrac{\left|-2\right|}{\sqrt{1+4}}=\dfrac{2}{\sqrt{5}}\)

d:

Vẽ đồ thị y=-2x

loading...

y=-2x

=>-2x+y=0

Khoảng cách từ O(0;0) đến đường thẳng y=-2x là:

\(\dfrac{\left|0\cdot\left(-2\right)+0\cdot1+0\right|}{\sqrt{\left(-2\right)^2+1^2}}=\dfrac{0}{\sqrt{\left(-2\right)^2+1^2}}=0\)

12 tháng 11 2023

Thay x=2 và y=6 vào (d), ta được:

2(m+2)+2m-6=6

=>4m+4+2m-6=6

=>6m-2=6

=>6m=8

=>\(m=\dfrac{4}{3}\)

Khi m=4/3 thì (d): \(y=\left(\dfrac{4}{3}+2\right)x+2\cdot\dfrac{4}{3}-6=\dfrac{10}{3}x-\dfrac{10}{3}\)

Gọi A(x,y) và B(x,y) lần lượt là giao điểm của (d) với trục Ox và Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\dfrac{10}{3}x-\dfrac{10}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\dfrac{10}{3}x=\dfrac{10}{3}\end{matrix}\right.\)

=>x=1 và y=0

=>A(1;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{10}{3}\cdot0-\dfrac{10}{3}=-\dfrac{10}{3}\end{matrix}\right.\)

=>\(B\left(0;-\dfrac{10}{3}\right)\)

O(0;0); A(1;0); B(0;-10/3)

=>\(OA=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=1\)

\(OB=\sqrt{\left(0-0\right)^2+\left(-\dfrac{10}{3}-0\right)^2}=\dfrac{10}{3}\)

\(AB=\sqrt{\left(0-1\right)^2+\left(-\dfrac{10}{3}-0\right)^2}=\dfrac{\sqrt{109}}{3}\)

Vì \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

Kẻ OH vuông góc AB tại H

=>OH là khoảng cách từ O đến (d)

Xét ΔOAB vuông tại O có OH là đường cao

nên \(OH\cdot AB=OA\cdot OB\)

\(\Leftrightarrow OH\cdot\dfrac{\sqrt{109}}{3}=1\cdot\dfrac{10}{3}\)

=>\(OH=\dfrac{10}{\sqrt{109}}\)

=>\(d\left(O;\left(d\right)\right)=\dfrac{10}{\sqrt{109}}\)

18 tháng 11 2023

a) Ta có: \(y=2x+1\)

\(+)a=2>0;b=1\) 

Đồ thị hàm số cắt: \(Ox\left(-\dfrac{1}{2};0\right);Oy\left(0;1\right)\)

 

b) Gọi giao điểm của hàm số với trục Ox là B, với trục Oy là A 

Xét tam giác OAB vuông tại O ta có: \(\left\{{}\begin{matrix}OA=1\\OB=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow S_{OAB}=\dfrac{1}{2}\cdot1\cdot\dfrac{1}{2}=\dfrac{1}{4}\left(đvdt\right)\)  

c) Gọi khoảng cách từ O đến (d) là đường cao OH của tam giác OAB ta có: 

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Rightarrow OH^2=\dfrac{OA^2OB^2}{OA^2+OB^2}=\dfrac{1^2\cdot\left(\dfrac{1}{2}\right)^2}{1^2+\left(\dfrac{1}{2}\right)^2}=\dfrac{1}{5}\)

\(\Rightarrow OH=\sqrt{\dfrac{1}{5}}=\dfrac{\sqrt{5}}{5}\)

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=ax+b, ta được:

\(a\cdot1+b=2\)

=>a+b=2

Thay x=0 và y=1 vào y=ax+b, ta được:

\(a\cdot0+b=1\)

=>b=1

a+b=2

=>a=2-b

=>a=2-1=1

Vậy: phương trình đường thẳng AB là y=x+1

b: Thay x=-1 vào y=x+1, ta được:

\(y=-1+1=0=y_C\)

vậy: C(-1;0) thuộc đường thẳng y=x+1

hay A,B,C thẳng hàng

c: Thay x=3 và y=2 vào y=x+1, ta được:

\(3+1=2\)

=>4=2(sai)

=>D(3;2) không thuộc đường thẳng AB

d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)

Vì (d) vuông góc với AB nên \(a\cdot1=-1\)

=>a=-1

=>y=-x+b 

Thay x=3 và y=2 vào y=-x+b, ta được:

b-3=2

=>b=5

vậy: (d): y=-x+5

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

24 tháng 11 2023

a: Để hàm số nghịch biến trên R thì 2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

b; Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:

\(\left(-1\right)\left(2m-1\right)+m-1=0\)

=>-2m+1+m-1=0

=>-m=0

=>m=0

c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:

\(1\left(2m-1\right)+m-1=4\)

=>2m-1+m-1=4

=>3m=6

=>m=2

Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)

=>3x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)

a: 

loading...

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ M là:

\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-3\\y=2x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3:\dfrac{5}{2}=-3\cdot\dfrac{2}{5}=-\dfrac{6}{5}\\y=2\cdot\dfrac{-6}{5}+4=\dfrac{-12}{5}+4=\dfrac{8}{5}\end{matrix}\right.\)

A(-2;0); C(2;0); M(-1,2;1,6)

\(AC=\sqrt{\left(2+2\right)^2+\left(0-0\right)^2}=\sqrt{4^2}=4\)

\(AM=\sqrt{\left(-1,2+2\right)^2+\left(1,6-0\right)^2}=\dfrac{4\sqrt{5}}{5}\)

\(CM=\sqrt{\left(-1,2-2\right)^2+1,6^2}=\dfrac{8\sqrt{5}}{5}\)

Vì \(MA^2+MC^2=AC^2\)

nên ΔMAC vuông tại M

c: Vì ΔMAC vuông tại M

nên \(S_{MAC}=\dfrac{1}{2}\cdot MA\cdot MC=\dfrac{1}{2}\cdot\dfrac{4\sqrt{5}}{5}\cdot\dfrac{8\sqrt{5}}{5}=\dfrac{2\cdot8}{5}=\dfrac{16}{5}\)

 

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0