Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
Phân tích đa thức thành nhân tử:
\(3x^2-12x^2y^2+3y^2+6xy\)
\(=3\left(x^2-4x^2y^2+y^2+2xy\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-\left(2xy\right)^2\right]\)
\(=3\left[\left(x+y\right)^2-\left(2xy\right)^2\right]\)
\(=3\left(x+y-2xy\right)\left(x+y+2xy\right)\)
a , 3x2 + 3y2 - 6xy - 12
= 3 ( x2 + y2 - 2xy - 4 )
= 3 ( x - y )2 - 22
= 3 ( x - y + 2 ) ( x - y - 2 )
\(a,3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\\ b,3x^2+5y-3xy-5x=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\\ c,3y^2-3z^2+3x^2+6xyz=3\left(y^2-z^2+x^2+2xyz\right)\\ d,x^2-25-2xy+y^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
a) x2 + 4x – y2 + 4;
=x2+4x+4-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
b) 3x2 + 6xy + 3y2 – 3z2;
=3.(x2+2xy+y2)-3z2
=3.(x+y)2-3z2
=3.[(x+y)2-z2]
=3.(x+y-x)(x+y+z)
c) x2 – 2xy + y2 – z2 + 2zt – t2.
=(x-y)2-(z2-2zt+t2)
=(x-y)2-(z-t)2
=[(x-y)-(z-t)][(x-y)+(z-t)]
=(x-y-z+t)(x-y+z-t)
\(3z^2+6zy+3y^2-27x^2\)
\(=3\left(z^2+2zy+y^2-9x^2\right)\)
\(=3\left(\left(z+y\right)^2-\left(3x\right)^2\right)\)
\(=3\left(z+y-3x\right)\left(z+y+3x\right)\)
\(A=3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)