Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\Delta ABC\sim\Delta MNP\left(gt\right)\)
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=k=\dfrac{2}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=\dfrac{AB+BC+AC}{MN+NP+MP}=\dfrac{C_{ABC}}{C_{MNP}}=k=\dfrac{2}{3}\)
Vậy: ...
Vì ΔABC ⁓ ΔMNP theo tỉ số k nên
A B M N = k ⇒ M N A B = 1 k
Nên ΔMNP ⁓ ΔABC theo tỉ số
Đáp án: B
Vì ΔABC ⁓ ΔMNP theo tỉ số k =2 ⇒ M N A B = 1 2
Nên ΔMNP ⁓ ΔABC theo tỉ số M N A B = 1 2
Đáp án: C
Vì tam giác ABC đồng dạng với tam giác MNP theo tỉ số 2 3 nên
A B M N = A C M P = B C N P = A B + A C + B C M N + M P + N P = P A B C P M N P
và A B M N = 2 3 ⇒ P A B C P M N P = 2 3
Từ đó P M N P = 3 P A B C 2 = 3.40 2 = 60 c m
Đáp án: A
ΔABC~ΔKHG
=>\(\dfrac{AB}{KH}=\dfrac{2}{3}\)
=>\(KH=AB\cdot\dfrac{3}{2}\)
ΔKHG~ΔMNP
=>\(\dfrac{KH}{MN}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}\cdot\dfrac{3}{2}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}=\dfrac{1}{3}:\dfrac{3}{2}=\dfrac{2}{9}\)
=>ΔABC đồng dạng với ΔMNP theo tỉ số \(\dfrac{2}{9}\)
Vì tam giác ABC đồng dạng với tam giác MNP theo tỉ số 2 3 nên
A B M N = A C M P = B C N P = A B + A C + B C M N + M P + N P = P A B C P M N P
và A B M N = 2 7 ⇒ P A B C P M N P = 2 7
Từ đó
P M N P = 7 P A B C 2 = 7.14 2 = 49 c m
Đáp án: D
Ta có: \(\Delta ABC\sim\Delta MNP\left(gt\right)\)
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=4\)
\(\Rightarrow AB=4MN;BC=4NP;AC=4MP\)
\(\Rightarrow\dfrac{C_{ABC}}{C_{MNP}}=\dfrac{AB+BC+AC}{MN+NP+MP}=\dfrac{4MN+4NP+4MP}{MN+NP+MP}=4\)
Vậy: ...
ΔABC đồng dạng với ΔMNP theo hệ số tỉ lệ là 4
=>Tỉ số chu vi của ΔABC và ΔMNP là 4