Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Theo hệ thức lượng trong tam giác vuông ta có
\(15^2=9\cdot BC\)
\(BC=\frac{225}{9}=25\left(cm\right)\)
\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)
Theo định lý Pytago ta có
\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)
Ta có đặt \(\widehat{ABC}=\alpha\)
\(\sin\alpha=\frac{20}{25}=0,8\)
Tới đây mình chịu do kết quả nó hơi kỳ...
Giải tam giác nhé em, ta vần vận dụng định lý Pitago và các hệ thức lượng.
Áp dụng đl Pitago ta có: \(BC=\sqrt{AB^2+AC^2}=5\)
Áp dụng hệ thức lượng \(BH=\frac{AB^2}{BC}=1,8\Rightarrow CH=BC-BH=3,2\)
\(AH=\sqrt{BH.CH}=2,4\)
\(sinB=\frac{AC}{BC}=0,8\Rightarrow B\approx53^08'\Rightarrow C\approx36^052'\)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AC2=CH.CBAC2=CH.CB
⇔AC2=(CB−BH)CB⇔AC2=(CB−BH)CB
⇔202=(CB−9)CB⇔CB2−9CB−400=0⇔202=(CB−9)CB⇔CB2−9CB−400=0
⇔(CB−25)(CB+16)=0⇔(CB−25)(CB+16)=0
Vì CB>0CB>0 nên CB=25CB=25 (cm)
CH=CB−BH=25−9=16CH=CB−BH=25−9=16 (cm)
Áp dụng định lý Pitago cho tam giác HACHAC:
AH=√AC2−CH2=√202−162=12AH=AC2−CH2=202−162=12 (cm)