Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=4+25=29\Rightarrow BC=\sqrt{29}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{10}{\sqrt{29}}=\frac{10\sqrt{29}}{29}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{4}{\sqrt{29}}=\frac{4\sqrt{29}}{29}\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{25}{\sqrt{29}}=\frac{25\sqrt{29}}{29}\)cm
Tam giác ABC vuông, AH là đường cao => áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH^2=HB.HC\Leftrightarrow HB.HC=4\). HB+HC=5.
giải hệ phương trình trên ra đc: HB=1, HC=4 hoặc HB=4, HC=1
th1: HB=1, HC=4
\(AB^2=HB.BC=1.5=5\Leftrightarrow AB=\sqrt{5}\)cm; \(AC^2=HC.BC=4.5=20\Leftrightarrow AC=\sqrt{20}\)cm.
tương tự bạn làm trường hợp 2 nha.
nhớ L I K E
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HC=4
BH+CH=5
=>BH=5-CH
HB*HC=4
=>HC(5-CH)=4
=>5HC-HC^2-4=0
=>HC^2-5HC+4=0
=>HC=1cm hoặc HC=4cm
TH1: HC=1cm
=>HB=4cm
\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)
TH2: HC=4cm
=>HB=1cm
\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=2^2+5^2=29\)
\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
hình tự vẽ nhé
a) \(AB< AC\) => \(BH< CH\)
Áp dụng hệ thức lượng vào tam giác vuông ABC ta được:
\(AH^2=BH.CH\)
=> \(BH.CH=4\)
mà \(BH+CH=5\),
giải ra ta được: \(BH=1cm;\)\(CH=4cm\)
Áp dụng hệ thức lượng vào tam giác vuông ABC đc:
AB2 = BH . BC
=> AB2 = 1 . 5 = 5
=> \(AB=\sqrt{5}cm\)
Tương tự đc: \(AC=2\sqrt{5}cm\)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
Bạn sẽ có hai tam giác vuông tại H và ABC đồng dạng theo thứ tự như sau (AHC), (BHA) và (BAC) . Từ đó bạn sẽ có các tỉ lê : AB:AC= tang C= AH:HC
và dùng công thức Pythagores
AB2+AC2=BC2, AC2= AH2+HC2
Bạn sẽ tìm được cạnh AB = \(\sqrt{ }\) 5 và AC=2 \(\sqrt{ }\)5
....
Tên bạn đẹp quá, Ba của bạn đặt tên hay.
Sỹ trong hàng sĩ, Gia trong gia môn, gia đình, Huy là Huy hoàng.