Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ADB và tam giác ADC có
AD _ chung ; ^DAB = ^DAC ; AB = AC
Vậy tam giác ADB = tam giác ADC (c.g.c)
b, Xét tam giác ABC cân tại A có AD là phân giác
đồng thời là đường cao hay AD vuông BC
c, Xét tam giác AMD và tam giác AND có
AD _ chung ; ^MAD = ^NAD
Vậy tam giác AMD = tam giác AND ( ch-gn )
=> AM = AN ( 2 cạnh tương ứng )
d, Ta có AM/AB = AN/AC => MN // BC ( Ta lét đảo )
a) Xét tam giác ABC: BAC+ABC+ACB=180\(\Rightarrow\)90+50+ACB=180
\(\Rightarrow\)ACB=180-140=40 độ
Xét tam giác ABM và tam giác HBM có:
BM chung; ABM = HBM (gt) ; AB=HB(gt)
\(\Rightarrow\)Tam giác ABM = tam giác HBM (c.g.c)
b) Theo câu a)tam giác ABM =tam giác HBM (c.g.c) nên BAM=BHM=90
Hay HM vuông góc với BC
c) ta có HN vuông góc với AB ; AC vuông góc với AB nên Hn song song với Ac
a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)( \(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
A B C M N H 1 2
b) có Tam giác ABH = tam giác AHC (cmt)
\(\Rightarrow\)A1=A2( 2 góc tương ứng)
xét tam giác AMH và tam giác ANH có
A!=A2( cmt)
AH là cạnh chung
AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)
Do đó tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)
\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)
\(\Rightarrow\)tam giác AMN cân tại A(ĐN)
A B H M C E D
a) Xét \(\Delta ABC\)cân tại A có AM là trung tuyến \(\Rightarrow\)M là trung điểm BC
\(\Rightarrow MB=MC\)
Xét \(\Delta MDC\)và \(\Delta MHB\)có: +) \(\widehat{BHM}=\widehat{CDM}=90^o\)
+) \(MB=MC\)
+) \(\widehat{BMH}=\widehat{CMD}\)( đối đỉnh )
\(\Rightarrow\Delta MDC=\Delta MHB\)( cạnh huyền - góc nhọn ) ( đpcm )
b) Từ \(\Delta MDC=\Delta MHB\)\(\Rightarrow\widehat{C}=\widehat{MBH}\)( 2 góc tương ứng )
mà \(\widehat{C}=\widehat{ABC}\)( \(\Delta ABC\)cân tại A ) \(\Rightarrow\widehat{ABC}=\widehat{MBH}\)
Xét \(\Delta BME\)và \(\Delta BMH\)có: +) \(\widehat{BEM}=\widehat{BHM}=90^o\)
+) chung cạnh MB
+) \(\widehat{ABC}=\widehat{HBC}\)
\(\Rightarrow\Delta BME=\Delta BMH\)( cạnh huyền - góc nhọn )
\(\Rightarrow ME=MH\)( 2 cạnh tương ứng ) \(\Rightarrow\Delta EMH\)cân tại M ( đpcm )
`a)`
Có `Delta ABC` cân tại `A=>AB=AC`
Xét `Delta ABH` và `Delta ACK` có :
`hat(AHB)=hat(AKC)(=90^0)`
`hat(A)-chung`
`AB=AC(cmt)`
`=>Delta ABH=Delota ACK(c.h-g.n)`
`b)`
Xét `Delta BHC` và `Delta CKB` có :
`hat(BHC)=hat(CKB)(=90^0)`
`hat(KBC)=hat(HCB)(hat(ABC)=hat(ACB))`
`BC-chung`
`=>Delta BHC=Delta CKB(c.h-g.n)`
`c)`
Có `Delta ABH= Delta ACK(cmt)=>AH=AK` ( 2 cạnh t/ứng )
`=>Delta AHK` cân tại `A=>hat(AHK)=(180^0-hat(A))/2`
`Delta ABC ` cân tại `A=>hat(ACB)=(180^0-hat(A))/2`
mà `2` góc này ở vị trí đ/vị
nên `KH//BC`
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K co
AB=AC
góc A chung
=>ΔAHB=ΔAKC
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKCB=ΔHBC
c: Xét ΔABC có AK/AB=AH/AC
nên KH//CB