Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là đường trung trực của AC
=>OM vuông góc AC (1)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC vuông góc DB(2)
Từ (1), (2) suy ra MO//DB
Xét ΔADB có
O là trung điểm của AB
OM//DB
Do đó: M là trung điểm của AD
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.
ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường tròn) ⇒ˆADM=900⇒ADM^=900 (1)
Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC
⇒ˆAEM=900⇒AEM^=900 (2).
Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.
b) Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)
Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).
Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^
c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).
Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).
Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.
Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.
Bước 1: Chứng minh AD/AC + AM/AN = 3.
Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:
$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$
Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:
$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$
Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.
Thay vào phương trình trên, ta được:
$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$
Tương đương với:
$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$
Từ đó suy ra:
$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$
Do đó:
$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC(1)
Xét (O) có
ΔACB nội tiếp
AB làđường kính
Do đo: ΔACB vuông tại C
=>AC vuông góc CB
=>\(AC\perp DB\left(2\right)\)
Từ (1), (2) suy ra DB//MO
Xét ΔABD có
O là trung điểm của AB
OM//DB
Do đó; M là trung điểm của AD
b:
Gọi I là giao điểm của MB với CH
CH\(\perp\)AB
DA\(\perp\)AB
Do đó: CH//DA
Xét ΔBDA có CH//DA
nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)
=>\(CH=\dfrac{BH}{BA}\cdot DA\)
Xét ΔBMA có IH//AM
nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)
=>\(IH=AM\cdot\dfrac{BH}{BA}\)
\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)
=>CH=2IH
=>I là trung điểm của CH
em cảm ơn ạ