cho đường tròn (O) ,từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC (B,C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Bài 1 thiếu đề

Bài 2 Mình không vẽ được hình nên bạn thông cảm

Xét tam giác vuông ACO có \(CM\perp AO\)

=> \(OM.OA=OC^2=OD^2\)

=> \(\frac{OD}{OA}=\frac{OM}{OD}\)

=> tam giác MDO đồng dạng tam giác DAO

=> MDO=OAD

Mà MDO=DEO

=> OAD=DEO

=> tứ giác ADOE nội tiếp

Vậy tứ giác ADOE nội tiếp

25 tháng 5 2019

cảm ơn bạn nhìu nhé b1 đủ đề đó ko thiếu đâu

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
31 tháng 3 2019

O A B C H E F

Bài này sử dụng bài toán phụ sau : tứ giác MNPQ nội tiếp có 2 đường chéo cắt nhau tại G thì

           GM . GP = GN . GQ  (hệ thức lượng trong đường tròn hay còn gọi là phương tích)

Vì từ giác BECF nội tiếp => HB . HC = HE . HF (1) 

VÌ tứ giác ABOC có ^ABO = ^ACO = 90o

=> ABOC nội tiếp => HO . HA = HB . HC (2)

Từ (1) ; (2) => HO . HA = HE . HF

                 => AEOF nội tiếp (đpcm)

a: ΔOED cân tại O 

mà OF là trung tuyến

nên OF vuông góc ED

=>OF vuông góc EA

góc OFA=góc OBA=góc OCA=90 độ

=>O,F,C,A,B cùng thuộc 1 đường tròn

b: Xét ΔICD và ΔIBC có

góc ICD=góc IBC

góc CID chung

=>ΔICD đồng dạng với ΔIBC

=>IC/IB=ID/IC

=>IC^2=IB*ID

Xét ΔIAD và ΔIBA có

góc IDA=góc IAB

góc AID chung

=>ΔIAD đồng dạng với ΔIBA

=>IA/IB=ID/IA

=>IA^2=IB*ID

=>IA=IC

=>I là trung điểm của AC