Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/AB=3;BC=4;AC=5 =>AB vuông góc với BC . Gỉa sử N(a;b)=>AN=a^2+(1-b)^2 ; BN=a^2+(4-b)^2 xong rồi áp dụng pytago vao tam giac ABN ta có: a^2+(1-b)2-a^2-(4-b)2 <=> b=24 => a=0=> N(0;4). Rồi cậu thay tọa độ của N vào pt đường thẳng d tính được m= -12/5
Gọi tọa độ của M(c;d) . cậu tìm pt đường thẳng AD là y=-1/2x +1
vì M vừa thuộc AD vừa thuộc d nên lập hệ : d=-1/2c+1 ; d= -12/5c-5/3 (cậu tự tìm c,d nhé)
A D C B M N
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
Tạ Duy Phương nhìn lại cho kĩ đề đi bạn, chắc bạn nhầm ở điểm D(4:-1) chứ không phải D(-1;4) nhé
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
Gọi \(B\left(x_0;y_0\right)\in\left(d\right)\Rightarrow y_0=-x_0+4\)
\(AB=\sqrt{\left(x_0-1\right)^2+\left(y_0-4\right)^2}\\ \Leftrightarrow AB^2=\left(x_0-1\right)^2+\left(-x_0+4-4\right)^2\\ =2x^2_0-2x_0+1=\left(\sqrt{2}x-\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dễ thấy AB nhỏ nhất khi \(\left(\sqrt{2}x_0-\dfrac{1}{\sqrt{2}}\right)^2=0\Rightarrow\sqrt{2}x_0-\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x_0=\dfrac{1}{\sqrt{2}}:\sqrt{2}=\dfrac{1}{2}\Rightarrow y_0=\dfrac{7}{2}\)
Vậy \(B\left(\dfrac{1}{2};\dfrac{7}{2}\right)\) thì AB bé nhất và bằng \(\dfrac{\sqrt{2}}{2}\)