Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a: ta có: ON\(\perp\)OB
AB\(\perp\)OB
Do đó: ON//AB
=>ON//AM
Ta có: OM\(\perp\)OC
AC\(\perp\)OC
Do đó: OM//AC
=>OM//AN
Xét tứ giác OMAN có
OM//AN
ON//AM
Do đó: OMAN là hình bình hành
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>AO là phân giác của góc MAN
Hình bình hành OMAN có AO là phân giác của góc MAN
nên OMAN là hình thoi
b: Kẻ OH\(\perp\)MN tại H
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(\widehat{BOM}=120^0-90^0=30^0\)
Xét ΔMOA có MO=MA
nên ΔMOA cân tại M
=>\(\widehat{MOA}=\widehat{MAO}=30^0\)
Xét ΔOBM vuông tại B và ΔOHM vuông tại H có
OM chung
\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)
Do đó: ΔOBM=ΔOHM
=>OB=OH=R
Xét (O) có
OH là bán kính
MN\(\perp\)OH tại H
Do đó: MN là tiếp tuyến của (O)