Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x-3=-2x\Leftrightarrow3x=3\Leftrightarrow x=1\)
\(x-x-12=0\Leftrightarrow0x=12\left(\text{Vô lý}\right)\)
Vậy không có nghiệm chung của phương trình
Trả lời:
\(x^2-3=-2x\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-1\end{cases}}}\)
Vậy x = - 3; x = - 1 là nghiệm của pt.
\(x^2-x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}}\)
Vậy x = 4; x = - 3 là nghiệm của pt.
=> Nghiệm chung của 2 phương trình trên là : x = - 3
\(\frac{x^3+3x^2-4x-12}{x^2+x-6}=\frac{x\left(x^2+x-6\right)+2x^2+2x-12}{x^2+x-6}=\frac{\left(x+2\right)\left(x^2+x-6\right)}{x^2+x-6}\)
\(=x+2\)
Ta có:\(A\div B=\frac{x^3+3x^2-4x-12}{x^2+x-6}\)
\(=\frac{x^3+x^2-6x-2x^2-2x+12}{x^2-2x+3x-6}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)}{x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x-6\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-2\right)\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=x-2\)
\(f\left(2,y\right)=0\)
\(\Leftrightarrow\left(5.2-3y+3\right)\left(4.2+2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}13-3y=0\\7+2y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{13}{3}\\y=-\frac{7}{2}\end{cases}}\).
Phân tích thành nhân tử:
-x^{2}+11x-30 =−x2+11x−30= (
Phải là như thế này:
\(-x^2+11x-30=-x^2+5x+6x-30=-x\left(x-5\right)+6\left(x-5\right)=-\left(x-5\right)\left(x-6\right)\)
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy : Tập nghiệm của PT là S={-1;-4}
#H
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)
\(x^2-6x+5=0\Leftrightarrow x^2-5x-x+5=0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\Leftrightarrow x=1;x=5\)
Vậy tập nghiệm phương trình là S = { 1 ; 5 }
x2 - 6x + 5 = 0 ( vầy hả ? )
<=> x2 - 5x - x + 5 = 0
<=> x( x - 5 ) - ( x - 5 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
Vậy phương trình có tập nghiệm S = { 5 ; 1 }
Ta có : \(x^2-6=x\)
\(\Leftrightarrow x^2-6-x=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;3\right\}\)
\(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;4\right\}\)
Vậy nghiệm chung của 2 phương trình là x = 3