Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

Ta có: ΔBAO vuông tại A

=>ΔBAO nội tiếp đường tròn đường kính BO

=>A nằm trên đường tròn đường kính BO(1)

Ta có: ΔBMO vuông tại M

=>ΔBMO nội tiếp đường tròn đường kính BO

=>M nằm trên đường tròn đường kính BO(2)

Từ (1),(2) suy ra A,B,M,O cùng thuộc đường tròn đường kính BO

28 tháng 12 2023

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE

28 tháng 12 2023

 

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE

28 tháng 12 2023

Vẽ hình hộ mình nhé bạn

 

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>ΔACD vuông tại C

mà CM là đường trung tuyến

nên CM=AD/2=AM=DM

Xét ΔMAO và ΔMCO có 

MA=MC

MO chung

AO=CO

DO đó: ΔMAO=ΔMCO

Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)

hay MC là tiếp tuyến của (O)

b: Ta có: MC=MA

nên M nằm trên đường trung trực của AC(1)

Ta có: OC=OA

nên O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OM là đường trung trực của AC

hay OM vuông góc với AC tại trung điểm của AC

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em