sử dụng công thức nghiệm để giải phương trình sau 4x² + 4x + 3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2023

\(4x^2+4x+3=0\)

\(\Delta=b^2-4ac=4^2-4.4.3=-32< 0\)

\(\Rightarrow\) Pt vô nghiệm

28 tháng 2 2022

Ta có:    \(\Delta=b^2-4ac=\left(-12\right)^2-4.4.9=144-144=0\)

Vì \(\Delta=0\)nên pt có 2 nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{12}{2.4}=\frac{3}{2}\)

Vậy ......

2 tháng 4 2018

 4x2 – 4x + 1 = 0;

a = 4; b = -4; c = 1

Δ = b2 - 4ac = (-4)2 - 4.4.1 = 16 - 16 = 0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

4 tháng 11 2017

a)  5 x 2   –   x   +   2   =   0 ;

a = 5; b = -1; c = 2

Δ   =   b 2   -   4 a c   =   ( - 1 ) 2   -   4 . 5 . 2

= 1 - 40 = -39 < 0

Vậy phương trình trên vô nghiệm.

b) 4 x 2   –   4 x   +   1   =   0 ;

a = 4; b = -4; c = 1

Δ   =   b 2   -   4 a c   =   ( - 4 ) 2 -   4 . 4 . 1   =   16   -   16   =   0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

c)  - 3 x 2   +   x   +   5   =   0

a = -3; b = 1; c = 5

Δ   =   b 2   -   4 a c   =   12   -   4 . ( - 3 ) . 5   =   1   +   60   =   61   >   0

⇒ Do Δ >0 nên áp dụng công thức nghiệm, phương trình có 2 nghiệm phân biệt

x 1   =   ( 1   -   √ 61 ) / 6 ;   x 2   =   ( 1   +   √ 61 ) / 6

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

19 tháng 3 2022

a, \(\Delta=25-8=17\)>0 Vậy pt có 2 nghiệm pb 

\(x=\dfrac{5\pm\sqrt{17}}{4}\)

b, \(\Delta=16-16=0\)Vậy pt có nghiệm kép 

\(x_1=x_2=\dfrac{1}{4}\)

c, \(\Delta=1-4.2.5< 0\)Vậy pt vô nghiệm 

d, \(\Delta=4+4.24=100>0\)Vậy pt có 2 nghiệm pb 

\(x=\dfrac{-2-10}{-6}=2;x=\dfrac{-2+10}{-6}=-\dfrac{4}{3}\)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

10 tháng 3 2016

c) tim x1 và x2 theo ct; 

x1= 16 +can denta ....tu lam

d) c/a <0

lam dc roi chu