Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ ME vuông góc AB tại E, MF...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: ta có: MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

26 tháng 4 2019

đổi k ko các bạn?

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

=>AE=3cm

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

=>AF=4cm

\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)

c: Xét tứ giác ABNC có

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

7 tháng 1 2022

Cảm ơn bạn nha^^

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .

 

 

a: BC=15cm

=>AM=7,5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

14 tháng 12 2018

Bài 2.

-Hình bn tự vẽ nhé!

Bài làm:

a, Có F là trung điểm của AC (gt)

\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)

Xét tam giác ABC ta có:

E là trung điểm của AB (gt)

G là trung điểm của BC (gt)

\(\Rightarrow\)EG là đường trung bình của tam giác ABC

\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)

Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.

mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.

AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)

mà EI song song với BF (gt) (4)

Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.

b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)

mà AE=EB (E là trung điểm của AB)

\(\Rightarrow\)GF=FI.

Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)

\(\Rightarrow\)AGCI là hình bình hành.

mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi

c, Theo b, ta có: AGCI là hình thoi

Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.

Khi đó AG là đường cao của tam giác ABC

Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A

mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.