Cho hình vuông ABCD. Trên các cạnh AB, BC, CD lần lượt lấy các điểm M, N, P sao ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:

∠POB = ∠QOD∠ (đối đỉnh),

OB = OD

∠PBO = ∠QDO (so le trong).

Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ

Lại có BP // DQ nên tứ giác PBQD là hình bình hành

Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.

25 tháng 11 2023

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 

12 tháng 1 2018

mình làm được phần a thôi, vậy có được không?

4 tháng 1 2023

quên cách làm mất rồi...

4 tháng 1 2023

khác gì nhaubucminh