Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{98^{99}+1}{98^{89}+1}>1\) =>\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}\)
\(=\frac{98.\left(98^{98}+1\right)}{98.\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C>D
Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )
Nên B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)
=\(\frac{17^{2009}+17}{17^{2010}+17}\)
=\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)
=\(\frac{17^{2008+1}}{17^{2009}+1}\)=A
Vậy A>B
\(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}\)
\(=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot13\cdot8}\)
\(=\frac{2^{10}\cdot78}{2^8\cdot13\cdot8}\)
\(=\frac{2^{10}\cdot13\cdot2\cdot3}{2^8\cdot13\cdot2\cdot4}\)
\(=\frac{2^2\cdot3}{4}\)
\(=3\)
\(=\frac{2^{10}x\left(13+65\right)}{2^8x104}\)
\(=\frac{2^8x2^2x78}{2^8x104}\)
\(=\frac{4x78}{104}\)
\(=\frac{312}{104}=3\)
Lấy C - D
\(C-D=\frac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{98}+1\right)\left(98^{89}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
Tử số bằng:
\(98^{187}+98^{99}+98^{88}+1-98^{187}-98^{98}-98^{89}-1\)
=\(98^{99}+98^{88}-98^{98}-98^{89}\)
= \(98^{99}-98^{98}+98^{88}-98^{89}\)
= \(98^{98}\left(98-1\right)+98^{88}\left(1-98\right)\)
= \(98^{98}.97-98^{88}.97=97\left(98^{98}-98^{88}\right)>0\)
Vậy C - D > 0 => C > D
Do C>1 nên ta có:
C=9899+1/9889+1>9899+1+97/9889+1+97=9899+98/9889+98=98(9898+1)/98(9888+1)=9898+1/9888+1=D
suy ra C>D
Ta có:
\(\left|x-1\right|\ge0;\left|x-2\right|\ge0;\left|x-3\right|\ge0;.....;\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+....+\left|x-10\right|>0\) vì không xảy ra dấu "="
\(\Rightarrow x-11>0\Rightarrow x>11>0\)
Khi đó bài toán trở thành:
\(x-1+x-2+x-3+.....x-10=x-11\)
\(\Leftrightarrow10x-55=x-11\)
\(\Leftrightarrow9x=44\)
\(\Leftrightarrow x=\frac{44}{9}\)
1/ = (-a) - b + a + c
2/ = -2 + -2 + .....+ -2 (500 số -2 )
= -2 . 500 = -1000
Tính chất nếu:
\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)
\(A>\dfrac{10^{99}+10}{10^{89}+10}\)
\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)
\(A>\dfrac{10^{98}+1}{10^{88}+1}\)
\(A>B\)
\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)
Vậy \(A< B\)