Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải tam giác nhé em, ta vần vận dụng định lý Pitago và các hệ thức lượng.
Áp dụng đl Pitago ta có: \(BC=\sqrt{AB^2+AC^2}=5\)
Áp dụng hệ thức lượng \(BH=\frac{AB^2}{BC}=1,8\Rightarrow CH=BC-BH=3,2\)
\(AH=\sqrt{BH.CH}=2,4\)
\(sinB=\frac{AC}{BC}=0,8\Rightarrow B\approx53^08'\Rightarrow C\approx36^052'\)
A B C H E F O
a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)
Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)
Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).
b) Biến đổi tương đương:
\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))
\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)
\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)
\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)
\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)
\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)
Vậy có ĐPCM.
a:
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>BH(BH+CH)=20
=>BH*(BH+4BH)=20
=>5BH^2=20
=>BH^2=4
=>BH=2(cm)
=>CH=8cm
b: \(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
S ABC=1/2*AH*BC
=1/2*4*10
=20cm2