Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25-x^2}=a\)
\(\sqrt{15-x^2}=b\)
a^2-b^2=10
(a-b)(a+b)=10
(a-b)=2
(a+b)=10/2=5
m(x-1) +4 -2y =0
Với mọi m => x-1 =0 => x =1
và 4-2y =0 => y =2
Điểm cố định mà HS luôn đi qua là :(1;2)
Phương trình hoành độ giao điểm \(\left(d_1\right)\)và \(\left(d_2\right)\)là:
\(\left(m+1\right)x+2=2x+1\)
\(\Leftrightarrow\left(m-1\right)x=-1\)(1)
Với \(m=1\)phương trình (1) vô nghiệm nên \(\left(d_1\right)\)và \(\left(d_2\right)\)không cắt nhau.
Với \(m\ne1\)phương trình (1) tương đương với:
\(x=-\frac{1}{m-1}\)
suy ra \(y=2x+1=\frac{-2}{m-1}+1=\frac{m-3}{m-1}\)
Để giao điểm hai đường đã cho có hoành độ và tung độ trái dấu thì:
\(-\frac{1}{m-1}.\frac{m-3}{m-1}< 0\Leftrightarrow3-m< 0\Leftrightarrow m>3\).