Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
Bài 1: Giả sử \(C\ge0\)
Ta có:
\(C=b^3-a^3-6b^2-a^2+9b\ge0\)
\(\Leftrightarrow\left(b^3-6b^2+9b\right)-\left(a^3+a^2\right)\ge0\Leftrightarrow b\left(b^2-6b+9\right)-a^2\left(a+1\right)\ge0\)
\(\Leftrightarrow b\left(b-3\right)^2-a^2\left(a+1\right)\ge0\)
Mà \(a+b=3\Rightarrow b=3-a\)
\(\Rightarrow C=\left(3-a\right)\left(3-a-3\right)^2-a^2\left(a+1\right)\ge0\Leftrightarrow a^2\left(3-a\right)-a^2\left(a+1\right)=a^2\left(2-2a\right)\ge0\)
Ta có: \(a^2\ge0;a\le0\Rightarrow2a\le0\Rightarrow-2a\ge0\Rightarrow2-2a\ge2\Rightarrow C\ge0\)(luôn đúng)
Bài 2: để suy nghĩ đã á
\(1.\) \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)
Đặt \(t=a^2+3a+6\) , ta được:
\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)
a,
Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)
=>đpcm
b,
Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)
\(\Rightarrow2a+2=a+b+2\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2+b^2=2\) (đpcm)