K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MN
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PK
1
ZH
0
17 tháng 8 2018
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
17 tháng 8 2018
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
=(x-y)^3-(x-y)(x+y)
=(x-y)(x^2-2xy+y^2-x-y)
\(x^3-3x^2y+3xy^2-y^3+y^2-x^2\)
\(=\left(x-y\right)^3-\left(x^2-y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x-y\right)\)