cho đoạn thẳng AB = 210 cm .Gọi M1 là trung điểm của đoạn thẳng AB .M2 là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

mình nghĩ mãi chả ra

30 tháng 5 2018

Chúc bạn học tốt

30 tháng 5 2018

Ko trả lời thì thôi chúc làm gì ?

7 tháng 3 2019

tam giác ABC có vuông ko vậy

27 tháng 4 2018

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :

AB2 + AC2 = BC2

\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82 

\(\Rightarrow\)AC = 8 cm

theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )

b) Xét tam giác DAC và tam giác BAC có :

AB = AD ( gt )

\(\widehat{DAC}=\widehat{BAC}=90^o\)

AC ( cạnh chung )

\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )

\(\Rightarrow\)DC = BC

\(\Rightarrow\)tam giác DCB cân tại C

c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC

\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm  

d)  Nối A với Q.

Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)

Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)

\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA

Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M

Suy ra : 3 điểm B,M,Q thẳng hàng

27 tháng 4 2018

áp dụng định lí py-ta-go ta có

AB^2+AC^2=BC

=6^2+AC^2=10^2

12+AC^2=20

SUY RA AC=20-12=8 

CĂN BẬC 2 CỦA 8 LÀ 4

SUY RA AC=4

GÓC B <C<A

14 tháng 4 2017

\(a. \)Xét  \(\Delta ABC\)vuông tại A theo địnhlý Py - ta - go, ta có:              \(BC^2=AC^2+AB^2\)
                                                                                                                \(\Rightarrow\)\(AB^2=BC^2-AC^2\)
                                                                                                                \(\Rightarrow\) \(AB^2=10^2-6^2=64\)
                                                                                                                 \(\Rightarrow\) \(AB=\sqrt{64}=8\)(cm)
Vì  CM là dường trung tuyến \(\Rightarrow\)BM = MA     \(\Rightarrow\)\(BM=MA=\frac{AB}{2}=\frac{8}{2}=4\)   (cm)

\(b.\) Xét \(\Delta CAM\) và \(\Delta DBM\)có:      \(MC=MD\)                          ( gt )
                                                                              \(\widehat{AMC}=\widehat{DMB}\)                  ( đối đỉnh )
                                                                               \(AM=BM\)                          ( CM là dường trung tuyến)

               Do đó \(\Delta CAM=\Delta DBM\)( c.g.c)

\(c.\)Xét \(\Delta DBC\)theo Bất đẳng thức tam giác, ta có:  \(DB+BC>DC\)
                 mà \(CM=MD\)nên  \(DC=2CM\)
                         \(BD=AC\)    ví    \(\Delta CAM=\Delta DBM\)
              \(\Rightarrow\)đpcm