Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
A B C M D
a) Xét tam giác MAB và tam giác MDC có:
MB=MA(gt) ; góc AMB = góc DMC (đối đỉnh) ;MB=MC (AM là trung tuyến ứng với BC)
-> Tam giác MAB = tam giác MDC (c.g.c)
-> góc CDM = góc BAM
-> CD song song với AB
-> góc DCA + góc BAC =180o (hai góc trong cùng phía)
góc DCA + 900 =180o
-> góc DCA = 90o
Vậy tam giác ACD vuông tại C
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạn - Toán lớp 7 - Học toán với OnlineMath
a) Chứng minh tam giác MAB bắng tam giác MDC. Suy ra tam giác ACD vuông.
b) Gọi k là trung điểm AC. Chứng minh KB=KD.
c) KD cắt BC tại I, KB cắt AD tại N. Chứng minh tam giác KNI cân.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
M C D A B
a)Xét tam giác MAB và tam giác MDC có:
MB = MA(gt) ; góc AMB = góc DMC (đối đỉnh) ; MB = MC (AM là trung tuyến ứng với BC)
=> Tam giác MAB = tam giác MDC (c.g.c)
=> Góc CDM = góc BAM
=> CD song song với AB
=> Góc DCA + góc BAC = 180o (hai góc trong cùng phía)
Góc DCA + 90o = 180o
=> Góc DCA = 90o
Vậy tam giác ACD vuông tại C
a) xét tam giác MAB và tam giác MDC có:
AM = MD (gt)
góc AMB = góc MCD ( đối đỉnh)
MB = MC (gt)
=> tam giác AMB = tam giác MCD
Xét tam giác MAB và tam giác MDC có:
MB=MC(gt);MA=MD(gt);góc BMA= góc CMD
Suy ra tam giác MAB=tam giác MDC (c.g.c)
\(\Rightarrow\) góc BAM=góc MDC ( 2 góc tương ứng ) mà 2 góc này ở vị trí so le trong \(\Rightarrow\) BA // DC
Mà BA vuông góc với AC ( tam giác ABC vuông) nên DC cũng vuông góc AC
\(\Rightarrow\) Tam giác ACD vuông tại C
câu a: xét 2 tam giác MAB vs MCD :
ta có : AM = DM (gt)
góc BMA = góc DMC ( đối đỉnh)
MB = MC (gt)
=> tam giác MAB = tam giác MDC (c.g.c)
câu b: ta có : AC > AB
AB = CD ( 2 cạnh tương ứng)
=> AC > CD ( tính chất bắt cầu )
câu c: xét 2 tam giác ABK va ADK
ta có : AB = DC ( như câu a)
KA = KC ( gt )
=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )
câu d : xét 2 tam giác NAK và ICK
ta có : AK = KC ( gt )
góc NAK = góc ICK (Vì :
*1: có góc A = góc C ( vuông )
*2:góc BAN = DCI ( như câu a)
từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK
=> góc NAK = góc ICK )
góc DKC = góc BKA ( như câu c )
=> tam giác NAK = tam giác ICK ( g.c.g )
=> NK = NI ( 2 cạnh tương ứng )
=> tam giác NKI cân tại K ( vì có NK = IK) .
Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi
d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB