Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm C nằm giữa B và D nên BC < BD (1)
Điểm C nằm giữa B và E nên BD < BE (2)
Vì B, C, D, E thẳng hàng. Từ (1) và (2) suy ra
BC < BD < BE
AB⊥BE
Suy ra: AB < AC < AD < AE.
+ Ta có BC < BD < BE.
Mà AC, AD, AE là các đường xiên tương ứng với các hình chiếu BC, BD, BE
Suy ra AC < AD < AE.
+ AB là đường vuông góc nên AB nhỏ nhất trong tất cả các đường xiên và đường vuông góc.
Do đó AB < AC < AD < AE.
^HT^
a) \(=\frac{25}{36}\)
b) \(=\frac{50}{7}\)
c) \(=\frac{200}{279}\)
a) 1,2: 3,24 = 120 : 324 = 10:27
b) 215:34215:34 = 115:34=115.43=44:15115:34=115.43=44:15
c) 27:0,4227:0,42 = 27:42100=27.10042=200294=100147=100:14727:42100=27.10042=200294=100147=100:147
Giải:
Ta có: Xét tam giác vuông ABC vuông tại B nên cạnh AC là cạnh huyền, ta có:
AC > AB (1) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)
\(\widehat{ADB}\) < 900 (vì tam giác ADB vuông tại B)
\(\widehat{ACD}\) = \(\widehat{ABC}\) + \(\widehat{BAC}\) (Góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
⇒ \(\widehat{ACD}\) = 900 + \(\widehat{BAC}\) > \(\widehat{ADB}\) = \(\widehat{ADC}\)
Xét tam giác ADC có:
\(\widehat{ACD}\) > \(\widehat{ADC}\) (cmt)
AD > AC (2)(Trong tam giác góc đối diện với cạnh lớn hơn thì lớn hơn và ngược lại)
Chứng minh tương tự ta có:
AE > AD (3)
Từ (1) và (2) và (3) ta có:
AE > AD > AC > AB
Kết luận: AE > AD > AC > AB