Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(2020^3\)=2020.2020.2020=2020.2020^2
B=2019.2020.2021=2020.(2020-1).(2020+1)=2020.(\(2020^2\)-1)(hằng đẳng thức đáng nhớ số 3)
suy ra A>B
học tốt ạ
Ta có: \(M=\frac{10^{2021}+2}{-3}\)
\(\Leftrightarrow M=\frac{100...0+2}{-3}\) ( 2021 số 0 )
\(\Leftrightarrow M=\frac{100...02}{-3}\) ( 2020 số 0 )
Vì \(1+0+0+...+0+2=3⋮-3\)\(\Rightarrow\)\(M\inℤ\)(1)
Ta có: \(N=\frac{10^{2021}+8}{9}\)
\(\Leftrightarrow M=\frac{100...0+8}{9}\) ( 2021 số 0 )
\(\Leftrightarrow M=\frac{100...08}{9}\) ( 2020 số 0 )
Vì \(1+0+0+...+0+8=9⋮9\)\(\Rightarrow\)\(N\inℤ\)(2)
Từ (1) và (2) \(\Rightarrow\)\(M.N\)là số nguyên
Ta có: \(A=\frac{2020}{2021}+\frac{2021}{2022}\)
\(\Rightarrow A=\frac{2021}{2021}-\frac{1}{2021}+\frac{2022}{2022}-\frac{1}{2022}\)
\(\Rightarrow A=1-\frac{1}{2021}+1-\frac{1}{2022}\)
\(\Rightarrow A=1+1-\frac{1}{2021}-\frac{1}{2022}\)
\(\Rightarrow A=2-\frac{1}{2021}-\frac{1}{2022}\)
\(\Rightarrow A=2-\frac{1}{2021\cdot2022}\)
\(B=\frac{2020+2021}{2021+2022}\)
\(\Rightarrow B=\frac{2021+2022}{2021+2022}-\frac{2}{2021+2022}\)
\(\Rightarrow B=1-\frac{2}{2021+2022}\)
\(\Rightarrow B=1-\frac{2}{4043}\)
Vậy ta sẽ so sánh:
\(1-\frac{1}{2021\cdot2022};\frac{2}{4043}\)
Vì \(2021\cdot2022>4043\)nên \(\frac{1}{2021\cdot2022}< \frac{2}{4043}\)vậy \(1-\frac{1}{2021\cdot2022}>\frac{2}{4043}\)
\(\Rightarrow\frac{2020}{2021}+\frac{2021}{2022}>\frac{2020+2021}{2021+2022}\)
\(\Rightarrow A>B\)
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
vì AB = 22021 nên AC1=22021:2=22021-1=22020( =BC1)
nên AC2=22021:22=22021-2=22019( =C1C2)
cứ tiếp tục đến AC2021=2( =C2020C2021)(lần số 2021)
C1C2021=C1C2+C2C3+C3C4+...+C2020C2021
C1C2021-C2020C2021=AC1
C1C2021=AC1-C2020C2021
C1C2021=22020-2(cm)(=1.2039022919278967120019673067581e+608)
chiều tớ làm câu b)
ta có:100 điểm cứ qua 2 điểm ta vẽ được 1 đường thẳng nên
điểm đầu tiên sẽ nối với 99 điểm tạo thành 99 đoạn thẳng
điểm thứ hai sẽ nối với 98 điểm tạo thành 98 đoạn thẳng
cứ như thế đến điểm thứ 99 sẽ nối với 1 điểm tạo thành 1 đoạn thẳng
còn điểm thứ 100 thì bỏ vỉ mấy điểm trước đã nối với nó
3 điểm không thẳng hàng thì có 3 đoạn;3 điểm thẳng hàng thì có đoạn nên cứ 3 điểm thẳng hàng thì trừ 2 đoạn
số đoạn thẳng (99+98+97+.........+1)-2=[(1+99).99:2]-2=4950-2=4948
vậy có 4948 đoạn thẳng
2021 mũ 2021 và 6969 mũ 2021 mũ 2021 nhé.Mk hơi vội nên viết sai