Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)
=>\(A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)
\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)
\(\Rightarrow A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\left(1\right)\)
Xét : \(\left(x-y\right)^2=x^2+y^2-2xy\)
Thay \(\hept{\begin{cases}x-y=-7\\xy=-6\end{cases}\left(3\right)}\)vào , ta được :
\(x^2+y^2=49-12=37\left(2\right)\)
Thay \(\left(2\right)\),\(\left(3\right)\)vào \(\left(1\right)\)vào , ta có giá trị của biểu thức tương đương với :
\(-7\left(37-6\right)-\left(-7^2\right)=-7.31-49=-266\)
\(x^3-y^3-x^2+2xy-y^2\)
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+y^2-xy\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+2xy-xy\right]-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+xy\right]-\left(x-y\right)^2\)
\(=\left(-5\right)\left[\left(-5\right)^2-6\right]-\left(-5\right)^2\)
\(=\left(-5\right)\left(25-6\right)-25\)
\(=\left(-5\right).21-25\)
\(=-105-25=-130\)
\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)
\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-x+y\right)\)
Đến đây thì ko bk lm nx
\(\left\{{}\begin{matrix}\dfrac{xy}{x^2+y^2}=\dfrac{3}{8}\Rightarrow x^2+y^2=\dfrac{8}{3}xy\\A=\dfrac{\dfrac{8}{3}xy+2xy}{\dfrac{8}{3}xy-2xy}=\dfrac{14}{2}=7\end{matrix}\right.\)
a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)
Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)
c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)
\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)
Thay \(x=234\)và \(y=465\)vào biểu thức ta được:
\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)
a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)
\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:
\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)
b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Tại x = 103 thì giá trị của BT là:
\(\left(103-3\right)^3=100^3=1000000\)
c) Ta có: \(4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x-y-1\right)\left(2x+y+1\right)\)
Tại x = 234, y = 465 thì giá trị của BT là:
\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)
\(=2\cdot934=1868\)
Khi đó P=0 mà?
\(P=-2\left(-1\right)\cdot2\left(-1\cdot2+2\right)=4\cdot0=0\)
Vậy ko đáp án nào thỏa mãn đề