Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dđây mà là câu hỏi lớp 1 hả hồ đức nam
dđây mà là câu hỏi lớp 1 hả hồ đức nam
dđây mà là câu hỏi lớp 1 hả hồ đức nam ???????????
Gọi K là trung điểm của HD
Xet ΔHDC có HK/HD=HM/HC
nên KM//DC
=>KM vuông góc với AD
Xét ΔADM có
MK,DH là các đường cao
MK cắt DH tại K
Do đó: K làtrực tâm
=>AK vuông góc với DM
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó; ABMK là hình bình hành
=>AK//BM
=>BM vuông góc với DM
Gọi K là trung điểm của HD
Xet ΔHDC có HK/HD=HM/HC
nên KM//DC
=>KM vuông góc với AD
Xét ΔADM có
MK,DH là các đường cao
MK cắt DH tại K
Do đó: K làtrực tâm
=>AK vuông góc với DM
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó; ABMK là hình bình hành
=>AK//BM
=>BM vuông góc với DM
Giải
Chiều rộng hình chữ nhật mới không đổi và bằng: 7,5 - 2,75 = 4,75m
Chiều dài HCN mới là: 7,5 + 2,5 = 10m
Diện tích hình chữ nhật ADNM là: 10 x 4,75 = 47,5m2
ĐS: 47,5m2
S D N C B A E M P F a a/2 a s a
a,Qua P kẻ PE//AB,\(F\in SA\)
Trong mp (SAB) , PE//AB,\(PE=\frac{1}{2}AB\)
mà AB//CD ,AB=CD
\(\Rightarrow PE//CD,PE=\frac{1}{2}DN\)
4 điểm P,F,C,D đồng phẳng
=>FPND là hbh
\(\Rightarrow PN//FD\)mà \(FD\subset\left(SAD\right)\)
\(\Rightarrow PN//\left(SAD\right)\)
b,\(MN//BC\Rightarrow\left(MNP\right)//BC\)
\(\hept{\begin{cases}P=\left(MNP\right)\Omega\left(SBC\right)\\\left(MNP\right)//BC\end{cases}}\)
=> giao tuyến của (MNP) với (SBC) là PE//BC ,\(E\in SC\)
=> Thiết diện là PENM M P E N a/2 a a a/4 a
\(PE=\frac{1}{2}BC=\frac{a}{2}\)
\(PM=\frac{1}{2}SA=a\)
\(MN=a\)
\(EM=\frac{1}{2}SD=a\)
\(S_{MNPE}=\left(a+\frac{a}{2}\right)\sqrt{a^2-\frac{a^2}{16}}\)
=\(\frac{3\sqrt{15}^2a^2}{16}\)
P/s hình hơi xấu
đây là đề hay bài giải ?
Thần đồng lớp 1