Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=5n+1
b=5k+2
a^2=1 (mod 5)
b^2=4 (mod5)
(a^2+b^2)=0 (mod 5)
không được dùng thì khai triển ra
a^2+b^2=(5n+1)^2+(5k+2)^2
25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5
- Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
- a : 5 dư 2 => a= 5k +2 ( k thuộc N )
- Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4
= 25( t2 + k2 ) + 10( t + 10k ) +5 chia hết cho 5 vì 25( t2 + k2 ) ; 10( t + 10k ) và 5 đều chia hết cho 5
Nên tổng các bình phương của hai số a và b đều chia hết cho 5
Đặt \(a=5k+1;b=5k+2\)
Cần cm:\(a^2+b^2⋮5\)
Ta có:\(a^2+b^2=\left(5k+1\right)^2+\left(5k+2\right)^2\)
\(=25k^2+10k+1+25k^2+20k+4\)
\(=50k^2+30k+5=5\left(10k^2+6k+1\right)⋮5\left(đpcm\right)\)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5
a=5n+1
b=5k+2
a^2=1 ﴾mod 5﴿
b^2=4 ﴾mod5﴿
﴾a^2+b^2﴿=0 ﴾mod 5﴿
không được dùng thì khai triển ra
a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2
25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5
chia hết mà còn dư ak bạn ~!~