K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

a=5n+1

b=5k+2

a^2=1 ﴾mod 5﴿

b^2=4 ﴾mod5﴿

﴾a^2+b^2﴿=0 ﴾mod 5﴿

không được dùng thì khai triển ra

a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2

25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5 

chia hết mà còn dư ak bạn ~!~

19 tháng 10 2016

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5

29 tháng 10 2016
  • Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
  •          a : 5 dư 2 => a= 5k +2 ( k thuộc N )
  • Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4

                                                                 = 25( t2  + k2 ) + 10( t + 10k ) +5  chia hết cho 5 vì 25( t + k) ; 10( t + 10k ) và 5 đều chia hết cho 5

      Nên tổng các bình phương của hai số a và b đều chia hết cho 5

      

13 tháng 8 2017

Đặt \(a=5k+1;b=5k+2\)

Cần cm:\(a^2+b^2⋮5\)

Ta có:\(a^2+b^2=\left(5k+1\right)^2+\left(5k+2\right)^2\)

\(=25k^2+10k+1+25k^2+20k+4\)

\(=50k^2+30k+5=5\left(10k^2+6k+1\right)⋮5\left(đpcm\right)\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

12 tháng 9 2021

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)

23 tháng 7 2018

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

29 tháng 10 2023

a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)

b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)

Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)

\(ab=25mn+20m+5n+4+1\)

\(ab=25mn+20m+5n+5⋮5\)

Ta có đpcm

11 tháng 6 2018

gọi thương của hai phép chia lần lượt là P và Q ,ta có 

a=5P+1

b=5Q+4

=> (ab)+1<=>(5P+1)(5Q+4)+1

                \(\Leftrightarrow25PQ+20P+5Q+5\)

                  \(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)

=>ab+1 chia hết cho 5

12 tháng 6 2018

Ta có a chia 5 dư 1 ,

         b chia 5 dư 4,

=> ab chia 5 dư 4

=> ab+1 chia hết cho 5