K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

Ta có 

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

Suy ra \(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

Đặt \(n=\frac{1}{2}\) thì \(A=1+n+n^2+...+n^{99}-\frac{100}{2^{100}}\)

Xét \(B=1+n+n^2+...+n^{99}\Leftrightarrow B.n=n+n^2+n^3+...+n^{100}\)

\(\Leftrightarrow B.n=\left(1+n+n^2+...+n^{99}\right)+\left(n^{100}-1\right)\)

\(\Leftrightarrow B.n=B+n^{100}-1\Leftrightarrow B\left(n-1\right)=n^{100}-1\Leftrightarrow B=\frac{n^{100}-1}{n-1}\)

Suy ra \(A=\frac{\frac{1}{2^{100}}-1}{\frac{1}{2}-1}-\frac{100}{2^{100}}=2\left(1-\frac{1}{2^{100}}\right)-\frac{100}{2^{100}}=-\frac{102}{2^{100}}+2< 2\)

Vậy A < 2

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

1 tháng 3 2017

Bài này còn cần bài giải không b

30 tháng 3 2017

lấy máy tính bấm đi bạn

7 tháng 5 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

3 tháng 8 2017

=\(\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)+\(\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\sqrt{2}-\sqrt{3}}\)+.....+\(\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right).\left(\sqrt{99}-\sqrt{100}\right)}\)

=\(\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{99}\)

=\(-1+\sqrt{100}\)

=9

25 tháng 7 2017

=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101

=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)

=1.1/101

=1/101

=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101

=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)

=1.1/101

=1/101

24 tháng 2 2017

Ta đặt cm là A

Vì 1/2 < 2/3 ; 3/4 < 4/5 ; 5/6 < 6/7 ; ...;99/100<100/101

=> A = 1/2 x 3/4 x 5/6 x...x 99/100 < B= 2/3 X 4/5 X 6/7 X....X100/101

=> A x A < A x B  = 1 x 3 x 5 x 99 / 2 x 4 x 6  x ......x 100 x 2 x 4 x 6 x ...x 100/3 x 5 x 7 x ...x 101

Ta rút gọn 2 x 4 x 6 x ..x 100  và 3 x 5 x ...x 99  ta còn 1/101 

=>A^2 < 1/101 => A^2 < 1/101 < 1/100 = > A ^ 2 <1/100 => A^2 ,(1/10 ^2

=> A < 1/10

Chứng minh A > 1/15 

  1/2 = 1/2 

  3/4 >2/3

  5/6 > 4/5 

......

99/100 > 98/99

A^2 > 1/2 x ( 1/2 x 2/3  x 3/4 x ...x 98/99 x 99/100

A^2 > 1/2 x 1/100

A^2 > 1/200 >  1/225 

A^2 > (1/15) ^2

Vậy A > 1/15

26 tháng 10 2016

1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

2 tháng 2 2017

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)