K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy

8 tháng 7 2018

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)

21 tháng 7 2017

Áp dụng liên tục a2 - b2 = (a - b)(a + b)   để biến đổi . Ta có: 

A = 332 - 1 = (316 - 1)(316 + 1) = (38- 1)(38 + 1)(316 + 1) = (34 - 1)(34 + 1)(38 + 1)(316 + 2) = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) =

    = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) = 2.B 

21 tháng 7 2017

Ta có 2B = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

2B = (34-1)(34+1)(38+1)(316+1)

2B = (38-1)(38+1)(316+1)

Tương tự ta đc: 

2B = 332-1

B= 332-1/2 hay B= A/2

Vậy A>B

7 tháng 7 2018

\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

                \(.........\)

\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)

Vậy  \(B< A\)

7 tháng 7 2018

 A=1.853020189*10 \(^{15}\)

B= 9.265100944*10\(^{15}\)

tự so sánh

18 tháng 3 2017

Nếu đề thế này thì mình có thể làm được:

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=3^{32}-1\)

\(\Rightarrow A=\dfrac{3^{32}-1}{2}\)

=> B>A

17 tháng 3 2017

B>A

7 tháng 6 2017

Ta có: B=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow\) 2B= \(2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

= \(\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

= \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

= \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

= \(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

= \(\left(3^{16}-1\right)\left(3^{16}+1\right)\)

= \(3^{32}-1\)

\(\Rightarrow\) B= \(\dfrac{3^{32}-1}{2}\)

Mà ta có A= \(3^{32}-1\)

\(\Rightarrow\) A=2B

26 tháng 1 2017

Ta có: \(A=3^{32}-1=\left(3^{16}+1\right)\left(3^{16}-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^8-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)\)

\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)

\(=2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Vậy A = 2B

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

17 tháng 7 2019

\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1< 3^{32}\)

Gợi ý: Sử dụng liên tục tính chất \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

17 tháng 7 2019

2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 + 1)

= (38 - 1)(38 + 1)(316 + 1)

= (316 - 1)(316 + 1)

= 332 - 1 < 332 

14 tháng 7 2018

1

14 tháng 7 2018

Violympic toán 8